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The International Mathematical Olympiad 
 
History  

The International Mathematical Olympiad (IMO) is the most important and prestigious mathematical 
competition for high-school students. It has played a significant role in generating wide interest in mathematics 
among high school students, as well as identifying talent.  

In the beginning, the IMO was a much smaller competition than it is today. In 1959, the following seven 
countries gathered to compete in the first IMO: Bulgaria, Czechoslovakia, German Democratic Republic, 
Hungary, Poland, Romania, and the Soviet Union. Since then, the competition has been held annually. 
Gradually, other Eastern-block countries, countries from Western Europe, and ultimately numerous countries 
from around the world and every continent joined in. (The only year in which the IMO was not held was 1980, 
when for financial reasons no one stepped in to host it. Today this is hardly a problem, and hosts are lined up 
several years in advance.) In the 45th IMO, held in Athens, no fewer than 85 countries took part.  

 
The Competition  

The format of the competition quickly became stable and unchanging. Each country may send up to six 
contestants and each contestant competes individually (without any help or collaboration). The country also 
sends a team leader, who participates in problem selection and is thus isolated from the rest of the team until the 
end of the competition, and a deputy leader, who looks after the contestants.  

The IMO competition lasts two days. On each day students are given four and a half hours to solve three 
problems, for a total of six problems. The first problem is usually the easiest on each day and the last problem 
the hardest, though there have been many notable exceptions. (IMO96-5 is one of the most difficult problems 
from all the Olympiads, having been fully solved by only six students out of several hundred!) Each problem is 
worth 7 points, making 42 points the maximum possible score. The number of points obtained by a contestant on 
each problem is the result of intense negotiations and, ultimately, agreement among the problem coordinators, 
assigned by the host country, and the team leader and deputy, who defend the interests of their contestants. This 
system ensures a relatively objective grade that is seldom off by more than two or three points.  

 
Awards  

Though countries naturally compare each other's scores, only individual prizes, namely medals and honorable 
mentions, are awarded on the IMO. Fewer than one twelfth of participants are awarded the gold medal, fewer 
than one fourth are awarded the gold or silver medal, and fewer than one half are awarded the gold, silver or 
bronze medal. Among the students not awarded a medal, those who score 7 points on at least one problem are 
awarded an honorable mention. This system of determining awards works rather well. It ensures, on the one 
hand, strict criteria and appropriate recognition for each level of performance, giving every contestant something 
to strive for. On the other hand, it also ensures a good degree of generosity that does not greatly depend on the 
variable difficulty of the problems proposed.  

 
How the problems are selected  

The selection of the problems consists of several steps. Participant countries send their proposals, which are 
supposed to be novel, to the IMO organizers. The organizing country does not propose problems. From the 
received proposals (the so-called longlisted problems), the Problem Committee selects a shorter list (the so-
called shortlisted problems), which is presented to the IMO Jury, consisting of all the team leaders. From the 
short-listed problems the Jury chooses 6 problems for the IMO.  

Apart from its mathematical and competitive side, the IMO is also a very large social event. After their work is 
done, the students have three days to enjoy the events and excursions organized by the host country, as well as to 
interact and socialize with IMO participants from around the world. All this makes for a truly memorable 
experience. 
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IMO Problems

1959 - 2009

3



4



First International Olympiad, 1959

1959/1.
Prove that the fraction 21n+4

14n+3
is irreducible for every natural number n.

1959/2.
For what real values of x is

√
(x +

√
2x− 1) +

√
(x−√2x− 1) = A,

given (a) A =
√

2, (b) A = 1, (c) A = 2, where only non-negative real
numbers are admitted for square roots?

1959/3.
Let a, b, c be real numbers. Consider the quadratic equation in cos x :

a cos2 x + b cos x + c = 0.

Using the numbers a, b, c, form a quadratic equation in cos 2x, whose roots
are the same as those of the original equation. Compare the equations in
cos x and cos 2x for a = 4, b = 2, c = −1.

1959/4.
Construct a right triangle with given hypotenuse c such that the median
drawn to the hypotenuse is the geometric mean of the two legs of the triangle.

1959/5.
An arbitrary point M is selected in the interior of the segment AB. The
squares AMCD and MBEF are constructed on the same side of AB, with
the segments AM and MB as their respective bases. The circles circum-
scribed about these squares, with centers P and Q, intersect at M and also
at another point N. Let N ′ denote the point of intersection of the straight
lines AF and BC.
(a) Prove that the points N and N ′ coincide.
(b) Prove that the straight lines MN pass through a fixed point S indepen-
dent of the choice of M.
(c) Find the locus of the midpoints of the segments PQ as M varies between
A and B.
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1959/6.
Two planes, P and Q, intersect along the line p. The point A is given in the
plane P, and the point C in the plane Q; neither of these points lies on the
straight line p. Construct an isosceles trapezoid ABCD (with AB parallel to
CD) in which a circle can be inscribed, and with vertices B and D lying in
the planes P and Q respectively.
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Second International Olympiad, 1960

1960/1.
Determine all three-digit numbers N having the property that N is divisible
by 11, and N/11 is equal to the sum of the squares of the digits of N.

1960/2.
For what values of the variable x does the following inequality hold:

4x2

(1−√1 + 2x)2
< 2x + 9?

1960/3.
In a given right triangle ABC, the hypotenuse BC, of length a, is divided
into n equal parts (n an odd integer). Let α be the acute angle subtending,
from A, that segment which contains the midpoint of the hypotenuse. Let h
be the length of the altitude to the hypotenuse of the triangle. Prove:

tan α =
4nh

(n2 − 1)a
.

1960/4.
Construct triangle ABC, given ha, hb (the altitudes from A and B) and ma,
the median from vertex A.

1960/5.
Consider the cube ABCDA′B′C ′D′ (with face ABCD directly above face
A′B′C ′D′).
(a) Find the locus of the midpoints of segments XY, where X is any point
of AC and Y is any point of B′D′.
(b) Find the locus of points Z which lie on the segments XY of part (a) with
ZY = 2XZ.

1960/6.
Consider a cone of revolution with an inscribed sphere tangent to the base
of the cone. A cylinder is circumscribed about this sphere so
that one of its bases lies in the base of the cone. Let V1 be the volume of the
cone and V2 the volume of the cylinder.
(a) Prove that V1 6= V2.
(b) Find the smallest number k for which V1 = kV2, for this case, construct
the angle subtended by a diameter of the base of the cone at the vertex of
the cone.
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1960/7.
An isosceles trapezoid with bases a and c and altitude h is given.
(a) On the axis of symmetry of this trapezoid, find all points P such that
both legs of the trapezoid subtend right angles at P.
(b) Calculate the distance of P from either base.
(c) Determine under what conditions such points P actually exist. (Discuss
various cases that might arise.)
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Third International Olympiad, 1961

1961/1.
Solve the system of equations:

x + y + z = a

x2 + y2 + z2 = b2

xy = z2

where a and b are constants. Give the conditions that a and b must satisfy
so that x, y, z (the solutions of the system) are distinct positive numbers.

1961/2.
Let a, b, c be the sides of a triangle, and T its area. Prove: a2+b2+c2 ≥ 4

√
3T.

In what case does equality hold?

1961/3.
Solve the equation cosn x− sinn x = 1, where n is a natural number.

1961/4.
Consider triangle P1P2P3 and a point P within the triangle. Lines P1P, P2P, P3P
intersect the opposite sides in points Q1, Q2, Q3 respectively. Prove that, of
the numbers

P1P

PQ1

,
P2P

PQ2

,
P3P

PQ3

at least one is ≤ 2 and at least one is ≥ 2.

1961/5.
Construct triangle ABC if AC = b, AB = c and 6 AMB = ω, where M is
the midpoint of segment BC and ω < 90◦. Prove that a
solution exists if and only if

b tan
ω

2
≤ c < b.

In what case does the equality hold?
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1961/6.
Consider a plane ε and three non-collinear points A,B,C on the same side of
ε; suppose the plane determined by these three points is not parallel to ε. In
plane a take three arbitrary points A′, B′, C ′. Let L,M, N be the midpoints
of segments AA′, BB′, CC ′; let G be the centroid of triangle LMN. (We will
not consider positions of the points A′, B′, C ′ such that the points L,M, N
do not form a triangle.) What is the locus of point G as A′, B′, C ′ range
independently over the plane ε?
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Fourth International Olympiad, 1962

1962/1.
Find the smallest natural number n which has the following properties:
(a) Its decimal representation has 6 as the last digit.
(b) If the last digit 6 is erased and placed in front of the remaining digits,
the resulting number is four times as large as the original number n.

1962/2.
Determine all real numbers x which satisfy the inequality:

√
3− x−√x + 1 >

1

2
.

1962/3.
Consider the cube ABCDA′B′C ′D′ (ABCD and A′B′C ′D′ are the upper and
lower bases, respectively, and edges AA′, BB′, CC ′, DD′ are parallel). The
point X moves at constant speed along the perimeter of the square ABCD
in the direction ABCDA, and the point Y moves at the same rate along
the perimeter of the square B′C ′CB in the direction B′C ′CBB′. Points X
and Y begin their motion at the same instant from the starting positions A
and B′, respectively. Determine and draw the locus of the midpoints of the
segments XY.

1962/4.
Solve the equation cos2 x + cos2 2x + cos2 3x = 1.

1962/5.
On the circle K there are given three distinct points A,B, C. Construct (using
only straightedge and compasses) a fourth point D on K such that a circle
can be inscribed in the quadrilateral thus obtained.

1962/6.
Consider an isosceles triangle. Let r be the radius of its circumscribed circle
and ρ the radius of its inscribed circle. Prove that the distance d between
the centers of these two circles is

d =
√

r(r − 2ρ).

1962/7.
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The tetrahedron SABC has the following property: there exist five spheres,
each tangent to the edges SA, SB, SC, BCCA, AB, or to their extensions.
(a) Prove that the tetrahedron SABC is regular.
(b) Prove conversely that for every regular tetrahedron five such spheres
exist.
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Fifth International Olympiad, 1963

1963/1.
Find all real roots of the equation

√
x2 − p + 2

√
x2 − 1 = x,

where p is a real parameter.

1963/2.
Point A and segment BC are given. Determine the locus of points in space
which are vertices of right angles with one side passing through A, and the
other side intersecting the segment BC.

1963/3.
In an n-gon all of whose interior angles are equal, the lengths of consecutive
sides satisfy the relation

a1 ≥ a2 ≥ · · · ≥ an.

Prove that a1 = a2 = · · · = an.

1963/4.
Find all solutions x1, x2, x3, x4, x5 of the system

x5 + x2 = yx1

x1 + x3 = yx2

x2 + x4 = yx3

x3 + x5 = yx4

x4 + x1 = yx5,

where y is a parameter.

1963/5.
Prove that cos π

7
− cos 2π

7
+ cos 3π

7
= 1

2
.
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1963/6.
Five students, A,B,C,D,E, took part in a contest. One prediction was that
the contestants would finish in the order ABCDE. This prediction was very
poor. In fact no contestant finished in the position predicted, and no two
contestants predicted to finish consecutively actually did so. A second pre-
diction had the contestants finishing in the order DAECB. This prediction
was better. Exactly two of the contestants finished in the places predicted,
and two disjoint pairs of students predicted to finish consecutively actually
did so. Determine the order in which the contestants finished.
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Sixth International Olympiad, 1964

1964/1.
(a) Find all positive integers n for which 2n − 1 is divisible by 7.
(b) Prove that there is no positive integer n for which 2n + 1 is divisible by
7.

1964/2.
Suppose a, b, c are the sides of a triangle. Prove that

a2(b + c− a) + b2(c + a− b) + c2(a + b− c) ≤ 3abc.

1964/3.
A circle is inscribed in triangle ABC with sides a, b, c. Tangents to the circle
parallel to the sides of the triangle are constructed. Each of these tangents
cuts off a triangle from ∆ABC. In each of these triangles, a circle is inscribed.
Find the sum of the areas of all four inscribed circles (in terms of a, b, c).

1964/4.
Seventeen people correspond by mail with one another - each one with all
the rest. In their letters only three different topics are discussed. Each pair
of correspondents deals with only one of these topics. Prove that there are
at least three people who write to each other about the same topic.

1964/5.
Suppose five points in a plane are situated so that no two of the straight lines
joining them are parallel, perpendicular, or coincident. From each point per-
pendiculars are drawn to all the lines joining the other four points. Determine
the maximum number of intersections that these perpendiculars can have.

1964/6.
In tetrahedron ABCD, vertex D is connected with D0 the centroid of ∆ABC.
Lines parallel to DD0 are drawn through A,B and C. These lines intersect the
planes BCD, CAD and ABD in points A1, B1 and C1, respectively. Prove
that the volume of ABCD is one third the volume of A1B1C1D0. Is the result
true if point D0 is selected anywhere within ∆ABC?
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Seventh Internatioaal Olympiad, 1965

1965/1.
Determine all values x in the interval 0 ≤ x ≤ 2π which satisfy the inequality

2 cos x ≤
∣∣∣
√

1 + sin 2x−√1− sin 2x
∣∣∣ ≤

√
2.

1965/2.
Consider the system of equations

a11x1 + a12x2 + a13x3 = 0

a21x1 + a22x2 + a23x3 = 0

a31x1 + a32x2 + a33x3 = 0

with unknowns x1, x2, x3. The coefficients satisfy the conditions:
(a) a11, a22, a33 are positive numbers;
(b) the remaining coefficients are negative numbers;
(c) in each equation, the sum of the coefficients is positive.
Prove that the given system has only the solution x1 = x2 = x3 = 0.

1965/3.
Given the tetrahedron ABCD whose edges AB and CD have lengths a and
b respectively. The distance between the skew lines AB and CD is d, and
the angle between them is ω. Tetrahedron ABCD is divided into two solids
by plane ε, parallel to lines AB and CD. The ratio of the distances of ε from
AB and CD is equal to k. Compute the ratio of the volumes of the two solids
obtained.

1965/4.
Find all sets of four real numbers x1, x2, x3, x4 such that the sum of any one
and the product of the other three is equal to 2.

1965/5.
Consider ∆OAB with acute angle AOB. Through a point M 6= O perpendic-
ulars are drawn to OA and OB, the feet of which are P and Q respectively.
The point of intersection of the altitudes of ∆OPQ is H. What is the locus
of H if M is permitted to range over (a) the side AB, (b) the interior of
∆OAB?
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1965/6.
In a plane a set of n points (n ≥ 3) is given. Each pair of points is connected
by a segment. Let d be the length of the longest of these segments. We define
a diameter of the set to be any connecting segment of length d. Prove that
the number of diameters of the given set is at most n.
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Eighth International Olympiad, 1966

1966/1.
In a mathematical contest, three problems, A,B,C were posed. Among the
participants there were 25 students who solved at least one problem each.
Of all the contestants who did not solve problem A, the number who solved
B was twice the number who solved C. The number of students who solved
only problem A was one more than the number of students who solved A
and at least one other problem. Of all students who solved just one problem,
half did not solve problem A. How many students solved only problem B?

1966/2.
Let a, b, c be the lengths of the sides of a triangle, and α, β, γ, respectively,
the angles opposite these sides. Prove that if

a + b = tan
γ

2
(a tan α + b tan β),

the triangle is isosceles.

1966/3.
Prove: The sum of the distances of the vertices of a regular tetrahedron from
the center of its circumscribed sphere is less than the sum of the distances of
these vertices from any other point in space.

1966/4.
Prove that for every natural number n, and for every real number x 6=
kπ/2t(t = 0, 1, ..., n; k any integer)

1

sin 2x
+

1

sin 4x
+ · · ·+ 1

sin 2nx
= cot x− cot 2nx.

1966/5.
Solve the system of equations

|a1 − a2|x2 + |a1 − a3|x3 + |a1 − a4|x4 = 1
|a2 − a1|x1 + |a2 − a3|x3 + |a2 − a3|x3 = 1
|a3 − a1|x1 + |a3 − a2| x2 = 1
|a4 − a1|x1 + |a4 − a2| x2 + |a4 − a3|x3 = 1

where a1, a2, a3, a4 are four different real numbers.
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1966/6.
In the interior of sides BC, CA,AB of triangle ABC, any points K,L, M,
respectively, are selected. Prove that the area of at least one of the triangles
AML, BKM, CLK is less than or equal to one quarter of the area of triangle
ABC.
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Ninth International Olympiad, 1967

1967/1.
Let ABCD be a parallelogram with side lengths AB = a,AD = 1, and with
6 BAD = α. If ∆ABD is acute, prove that the four circles of radius 1 with
centers A,B, C, D cover the parallelogram if and only if

a ≤ cos α +
√

3 sin α.

1967/2.
Prove that if one and only one edge of a tetrahedron is greater than 1, then
its volume is ≤ 1/8.

1967/3.
Let k, m, n be natural numbers such that m + k + 1 is a prime greater than
n + 1. Let cs = s(s + 1). Prove that the product

(cm+1 − ck)(cm+2 − ck) · · · (cm+n − ck)

is divisible by the product c1c2 · · · cn.

1967/4.
Let A0B0C0 and A1B1C1 be any two acute-angled triangles. Consider all
triangles ABC that are similar to ∆A1B1C1 (so that vertices A1, B1, C1 cor-
respond to vertices A, B, C, respectively) and circumscribed about triangle
A0B0C0 (where A0 lies on BC,B0 on CA, and AC0 on AB). Of all such
possible triangles, determine the one with maximum area, and construct it.

1967/5.
Consider the sequence {cn}, where

c1 = a1 + a2 + · · ·+ a8

c2 = a2
1 + a2

2 + · · ·+ a2
8

· · ·
cn = an

1 + an
2 + · · ·+ an

8

· · ·
in which a1, a2, · · · , a8 are real numbers not all equal to zero. Suppose that
an infinite number of terms of the sequence {cn} are equal to zero. Find all
natural numbers n for which cn = 0.
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1967/6.
In a sports contest, there were m medals awarded on n successive days (n >
1). On the first day, one medal and 1/7 of the remaining m − 1 medals
were awarded. On the second day, two medals and 1/7 of the now remaining
medals were awarded; and so on. On the n-th and last day, the remaining n
medals were awarded. How many days did the contest last, and how many
medals were awarded altogether?
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Tenth International Olympiad, 1968

1968/1.
Prove that there is one and only one triangle whose side lengths are consec-
utive integers, and one of whose angles is twice as large as another.

1968/2.
Find all natural numbers x such that the product of their digits (in decimal
notation) is equal to x2 − 10x− 22.

1968/3.
Consider the system of equations

ax2
1 + bx1 + c = x2

ax2
2 + bx2 + c = x3

· · ·
ax2

n−1 + bxn−1 + c = xn

ax2
n + bxn + c = x1,

with unknowns x1, x2, · · · , xn, where a, b, c are real and a 6= 0. Let ∆ =
(b− 1)2 − 4ac. Prove that for this system
(a) if ∆ < 0, there is no solution,
(b) if ∆ = 0, there is exactly one solution,
(c) if ∆ > 0, there is more than one solution.

1968/4.
Prove that in every tetrahedron there is a vertex such that the three edges
meeting there have lengths which are the sides of a triangle.

1968/5.
Let f be a real-valued function defined for all real numbers x such that, for
some positive constant a, the equation

f(x + a) =
1

2
+

√
f(x)− [f(x)]2

holds for all x.
(a) Prove that the function f is periodic (i.e., there exists a positive number
b such that f(x + b) = f(x) for all x).
(b) For a = 1, give an example of a non-constant function with the required
properties.
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1968/6.
For every natural number n, evaluate the sum

∞∑

k=0

[
n + 2k

2k+1

]
=

[
n + 1

2

]
+

[
n + 2

4

]
+ · · ·+

[
n + 2k

2k+1

]
+ · · ·

(The symbol [x] denotes the greatest integer not exceeding x.)
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Eleventh International Olympiad, 1969

1969/1.
Prove that there are infinitely many natural numbers a with the following
property: the number z = n4 + a is not prime for any natura1 number n.

1969/2.
Let a1, a2, · · · , an be real constants, x a real variable, and

f(x) = cos(a1 + x) +
1

2
cos(a2 + x) +

1

4
cos(a3 + x)

+ · · ·+ 1

2n−1
cos(an + x).

Given that f(x1) = f(x2) = 0, prove that x2 − x1 = mπ for some integer m.

1969/3.
For each value of k = 1, 2, 3, 4, 5, find necessary and sufficient conditions on
the number a > 0 so that there exists a tetrahedron with k edges of length
a, and the remaining 6− k edges of length 1.

1969/4.
A semicircular arc γ is drawn on AB as diameter. C is a point on γ other
than A and B, and D is the foot of the perpendicular from C to AB. We
consider three circles, γ1, γ2, γ3, all tangent to the line AB. Of these, γ1 is
inscribed in ∆ABC, while γ2 and γ3 are both tangent to CD and to γ, one on
each side of CD. Prove that γ1, γ2 and γ3 have a second tangent in common.

1969/5.
Given n > 4 points in the plane such that no three are collinear. Prove that
there are at least

(
n−3

2

)
convex quadrilaterals whose vertices are four of the

given points.

1969/6.
Prove that for all real numbers x1, x2, y1, y2, z1, z2, with x1 > 0, x2 > 0, x1y1−
z2
1 > 0, x2y2 − z2

2 > 0, the inequality

8

(x1 + x2) (y1 + y2)− (z1 + z2)
2 ≤

1

x1y1 − z2
1

+
1

x2y2 − z2
2

is satisfied. Give necessary and sufficient conditions for equality.
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Twelfth International Olympiad, 1970

1970/1.
Let M be a point on the side AB of ∆ABC. Let r1, r2 and r be the radii
of the inscribed circles of triangles AMC, BMC and ABC. Let q1, q2 and q
be the radii of the escribed circles of the same triangles that lie in the angle
ACB. Prove that

r1

q1

· r2

q2

=
r

q
.

1970/2.
Let a, b and n be integers greater than 1, and let a and b be the bases of
two number systems. An−1 and An are numbers in the system with base a,
and Bn−1 and Bnare numbers in the system with base b; these are related as
follows:

An = xnxn−1 · · · x0, An−1 = xn−1xn−2 · · ·x0,

Bn = xnxn−1 · · · x0, Bn−1 = xn−1xn−2 · · · x0,

xn 6= 0, xn−1 6= 0.

Prove:
An−1

An

<
Bn−1

Bn

if and only if a > b.

1970/3.
The real numbers a0, a1, ..., an, ... satisfy the condition:

1 = a0 ≤ a1 ≤ a2 ≤ · · · ≤ an ≤ · · · .
The numbers b1, b2, ..., bn, ... are defined by

bn =
n∑

k=1

(
1− ak−1

ak

)
1√
ak

.

(a) Prove that 0 ≤ bn < 2 for all n.
(b) Given c with 0 ≤ c < 2, prove that there exist numbers a0, a1, ... with
the above properties such that bn > c for large enough n.

1970/4.
Find the set of all positive integers n with the property that the set {n, n +
1, n + 2, n + 3, n + 4, n + 5} can be partitioned into two sets such that the
product of the numbers in one set equals the product of the numbers in the
other set.
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1970/5.
In the tetrahedron ABCD, angle BDC is a right angle. Suppose that the
foot H of the perpendicular from D to the plane ABC is the intersection of
the altitudes of ∆ABC. Prove that

(AB + BC + CA)2 ≤ 6(AD2 + BD2 + CD2).

For what tetrahedra does equality hold?

1970/6.
In a plane there are 100 points, no three of which are collinear. Consider all
possible triangles having these points as vertices. Prove that no more than
70% of these triangles are acute-angled.
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Thirteenth International Olympiad, 1971

1971/1.
Prove that the following assertion is true for n = 3 and n = 5, and that it is
false for every other natural number n > 2 :
If a1, a2, ..., an are arbitrary real numbers, then
(a1 − a2)(a1 − a3) · · · (a1 − an) + (a2 − a1)(a2 − a3) · · · (a2 − an)
+ · · ·+ (an − a1)(an − a2) · · · (an − an−1) ≥ 0

1971/2.
Consider a convex polyhedron P1 with nine vertices A1A2, ..., A9; let Pi be
the polyhedron obtained from P1 by a translation that moves vertex A1 to
Ai(i = 2, 3, ..., 9). Prove that at least two of the polyhedra P1, P2, ..., P9 have
an interior point in common.

1971/3.
Prove that the set of integers of the form 2k − 3(k = 2, 3, ...) contains an
infinite subset in which every two members are relatively prime.

1971/4.
All the faces of tetrahedron ABCD are acute-angled triangles. We consider
all closed polygonal paths of the form XY ZTX defined as follows: X is a
point on edge AB distinct from A and B; similarly, Y, Z, T are interior points
of edges BCCD, DA, respectively. Prove:
(a) If 6 DAB + 6 BCD 6= 6 CDA + 6 ABC, then among the polygonal paths,
there is none of minimal length.
(b) If 6 DAB + 6 BCD = 6 CDA + 6 ABC, then there are infinitely many
shortest polygonal paths, their common length being 2AC sin(α/2), where
α = 6 BAC + 6 CAD + 6 DAB.

1971/5.
Prove that for every natural number m, there exists a finite set S of points
in a plane with the following property: For every point A in S, there are
exactly m points in S which are at unit distance from A.

1971/6.
Let A = (aij)(i, j = 1, 2, ..., n) be a square matrix whose elements are non-
negative integers. Suppose that whenever an element aij = 0, the sum of the
elements in the ith row and the jth column is ≥ n. Prove that the sum of
all the elements of the matrix is ≥ n2/2.
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Fourteenth International Olympiad, 1972

1972/1.
Prove that from a set of ten distinct two-digit numbers (in the decimal sys-
tem), it is possible to select two disjoint subsets whose members have the
same sum.

1972/2.
Prove that if n ≥ 4, every quadrilateral that can be inscribed in a circle can
be dissected into n quadrilaterals each of which is inscribable in a circle.

1972/3.
Let m and n be arbitrary non-negative integers. Prove that

(2m)!(2n)!

m′n!(m + n)!

is an integer. (0! = 1.)

1972/4.
Find all solutions (x1, x2, x3, x4, x5) of the system of inequalities

(x2
1 − x3x5)(x

2
2 − x3x5) ≤ 0

(x2
2 − x4x1)(x

2
3 − x4x1) ≤ 0

(x2
3 − x5x2)(x

2
4 − x5x2) ≤ 0

(x2
4 − x1x3)(x

2
5 − x1x3) ≤ 0

(x2
5 − x2x4)(x

2
1 − x2x4) ≤ 0

where x1, x2, x3, x4, x5 are positive real numbers.

1972/5.
Let f and g be real-valued functions defined for all real values of x and y,
and satisfying the equation

f(x + y) + f(x− y) = 2f(x)g(y)

for all x, y. Prove that if f(x) is not identically zero, and if |f(x)| ≤ 1 for all
x, then |g(y)| ≤ 1 for all y.

1972/6.
Given four distinct parallel planes, prove that there exists a regular tetrahe-
dron with a vertex on each plane.
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Fifteenth International Olympiad, 1973

1973/1.
Point O lies on line g;

−−→
OP1,

−−→
OP2, ...,

−−→
OPn are unit vectors such that points

P1, P2, ..., Pn all lie in a plane containing g and on one side of g. Prove that
if n is odd, ∣∣∣−−→OP1 +

−−→
OP2 + · · ·+−−→

OPn

∣∣∣ ≥ 1

Here
∣∣∣−−→OM

∣∣∣ denotes the length of vector
−−→
OM .

1973/2.
Determine whether or not there exists a finite set M of points in space not
lying in the same plane such that, for any two points A and B of M, one can
select two other points C and D of M so that lines AB and CD are parallel
and not coincident.

1973/3.
Let a and b be real numbers for which the equation

x4 + ax3 + bx2 + ax + 1 = 0

has at least one real solution. For all such pairs (a, b), find the minimum
value of a2 + b2.

1973/4.
A soldier needs to check on the presence of mines in a region having the
shape of an equilateral triangle. The radius of action of his detector is equal
to half the altitude of the triangle. The soldier leaves from one vertex of the
triangle. What path shouid he follow in order to travel the least possible
distance and still accomplish his mission?

1973/5.
G is a set of non-constant functions of the real variable x of the form

f(x) = ax + b, a and b are real numbers,

and G has the following properties:
(a) If f and g are in G, then g ◦ f is in G; here (g ◦ f)(x) = g[f(x)].
(b) If f is in G, then its inverse f−1 is in G; here the inverse of f(x) = ax+ b
is f−1(x) = (x− b)/a.
(c) For every f in G, there exists a real number xf such that f(xf ) = xf .
Prove that there exists a real number k such that f(k) = k for all f in G.
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1973/6.
Let a1, a2, ..., an be n positive numbers, and let q be a given real number such
that 0 < q < 1. Find n numbers b1, b2, ..., bn for which
(a) ak < bk for k = 1, 2, · · · , n,
(b) q < bk+1

bk
< 1

q
for k = 1, 2, ..., n− 1,

(c) b1 + b2 + · · ·+ bn < 1+q
1−q

(a1 + a2 + · · ·+ an).
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Sixteenth International Olympiad, 1974

1974/1.
Three players A,B and C play the following game: On each of three cards
an integer is written. These three numbers p, q, r satisfy 0 < p < q < r. The
three cards are shuffled and one is dealt to each player. Each then receives
the number of counters indicated by the card he holds. Then the cards are
shuffled again; the counters remain with the players.
This process (shuffling, dealing, giving out counters) takes place for at least
two rounds. After the last round, A has 20 counters in all, B has 10 and C
has 9. At the last round B received r counters. Who received q counters on
the first round?

1974/2.
In the triangle ABC, prove that there is a point D on side AB such that CD
is the geometric mean of AD and DB if and only if

sin A sin B ≤ sin2 C

2
.

1974/3.
Prove that the number

∑n
k=0

(
2n+1
2k+1

)
23k is not divisible by 5 for any integer

n ≥ 0.

1974/4.
Consider decompositions of an 8× 8 chessboard into p non-overlapping rect-
angles subject to the following conditions:
(i) Each rectangle has as many white squares as black squares.
(ii) If ai is the number of white squares in the i-th rectangle, then a1 < a2 <
· · · < ap. Find the maximum value of p for which such a decomposition is
possible. For this value of p, determine all possible sequences a1, a2, · · · , ap.

1974/5.
Determine all possible values of

S =
a

a + b + d
+

b

a + b + c
+

c

b + c + d
+

d

a + c + d

where a, b, c, d are arbitrary positive numbers.
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1974/6.
Let P be a non-constant polynomial with integer coefficients. If n(P ) is
the number of distinct integers k such that (P (k))2 = 1, prove that n(P ) −
deg(P ) ≤ 2, where deg(P ) denotes the degree of the polynomial P.
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Seventeenth International Olympiad, 1975

1975/1.
Let xi, yi (i = 1, 2, ..., n) be real numbers such that

x1 ≥ x2 ≥ · · · ≥ xn and y1 ≥ y2 ≥ · · · ≥ yn.

Prove that, if z1, z2, · · · , zn is any permutation of y1, y2, · · · , yn, then

n∑

i=1

(xi − yi)
2 ≤

n∑

i=1

(xi − zi)
2.

1975/2.
Let a1, a2, a3, · · · be an infinite increasing sequence of positive integers. Prove
that for every p ≥ 1 there are infinitely many am which can be written in
the form

am = xap + yaq

with x, y positive integers and q > p.

1975/3.
On the sides of an arbitrary triangle ABC, triangles ABR, BCP, CAQ are
constructed externally with 6 CBP = 6 CAQ = 45◦, 6 BCP = 6 ACQ =
30◦, 6 ABR = 6 BAR = 15◦. Prove that 6 QRP = 90◦ and QR = RP.

1975/4.
When 44444444 is written in decimal notation, the sum of its digits is A. Let
B be the sum of the digits of A. Find the sum of the digits of B. (A and B
are written in decimal notation.)

1975/5.
Determine, with proof, whether or not one can find 1975 points on the cir-
cumference of a circle with unit radius such that the distance between any
two of them is a rational number.

1975/6.
Find all polynomials P, in two variables, with the following properties:
(i) for a positive integer n and all real t, x, y

P (tx, ty) = tnP (x, y)
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(that is, P is homogeneous of degree n),
(ii) for all real a, b, c,

P (b + c, a) + P (c + a, b) + P (a + b, c) = 0,

(iii) P (1, 0) = 1.
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Eighteenth International Olympiad, 1976

1976/1.
In a plane convex quadrilateral of area 32, the sum of the lengths of two
opposite sides and one diagonal is 16. Determine all possible lengths of the
other diagonal.

1976/2.
Let P1(x) = x2 − 2 and Pj(x) = P1(Pj−1(x)) for j = 2, 3, · · ·. Show that,
for any positive integer n, the roots of the equation Pn(x) = x are real and
distinct.

1976/3.
A rectangular box can be filled completely with unit cubes. If one places as
many cubes as possible, each with volume 2, in the box, so that their edges
are parallel to the edges of the box, one can fill exactly 40% of the box.
Determine the possible dimensions of all such boxes.

1976/4.
Determine, with proof, the largest number which is the product of positive
integers whose sum is 1976.

1976/5.
Consider the system of p equations in q = 2p unknowns x1, x2, · · · , xq :

a11x1 + a12x2 + · · ·+ a1qxq = 0

a21x1 + a22x2 + · · ·+ a2qxq = 0

· · ·
ap1x1 + ap2x2 + · · ·+ apqxq = 0

with every coefficient aij member of the set {−1, 0, 1}. Prove that the system
has a solution (x1, x2, · · · , xq) such that
(a) all xj (j = 1, 2, ..., q) are integers,
(b) there is at least one value of j for which xj 6= 0,
(c) |xj| ≤ q(j = 1, 2, ..., q).

1976/6.
A sequence {un} is defined by

u0 = 2, u1 = 5/2, un+1 = un(u2
n−1 − 2)− u1for n = 1, 2, · · ·
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Prove that for positive integers n,

[un] = 2[2n−(−1)n]/3

where [x] denotes the greatest integer ≤ x.
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Nineteenth International Mathematical Olympiad,
1977

1977/1.
Equilateral triangles ABK,BCL,CDM, DAN are constructed inside the
square ABCD. Prove that the midpoints of the four segments KL, LM, MN, NK
and the midpoints of the eight segments AKBK, BL, CL, CM, DM, DN, AN
are the twelve vertices of a regular dodecagon.

1977/2.
In a finite sequence of real numbers the sum of any seven successive terms is
negative, and the sum of any eleven successive terms is positive. Determine
the maximum number of terms in the sequence.

1977/3.
Let n be a given integer > 2, and let Vn be the set of integers 1 + kn, where
k = 1, 2, .... A number m ∈ Vn is called indecomposable in Vn if there do not
exist numbers p, q ∈ Vn such that pq = m. Prove that there exists a number
r ∈ Vn that can be expressed as the product of elements indecomposable in
Vn in more than one way. (Products which differ only in the order of their
factors will be considered the same.)

1977/4.
Four real constants a, b, A, B are given, and

f(θ) = 1− a cos θ − b sin θ − A cos 2θ −B sin 2θ.

Prove that if f(θ) ≥ 0 for all real θ, then

a2 + b2 ≤ 2 and A2 + B2 ≤ 1.

1977/5.
Let a and b be positive integers. When a2+b2 is divided by a+b, the quotient
is q and the remainder is r. Find all pairs (a, b) such that q2 + r = 1977.

1977/6.
Let f(n) be a function defined on the set of all positive integers and having
all its values in the same set. Prove that if

f(n + 1) > f(f(n))

for each positive integer n, then

f(n) = n for each n.
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Twentieth International Olympiad, 1978
1978/1. m and n are natural numbers with 1 ≤ m < n. In their decimal
representations, the last three digits of 1978m are equal, respectively, to the
last three digits of 1978n. Find m and n such that m + n has its least value.
1978/2. P is a given point inside a given sphere. Three mutually perpendic-
ular rays from P intersect the sphere at points U, V, and W ; Q denotes the
vertex diagonally opposite to P in the parallelepiped determined by PU, PV,
and PW. Find the locus of Q for all such triads of rays from P
1978/3. The set of all positive integers is the union of two disjoint subsets
{f(1), f(2), ..., f(n), ...}, {g(1), g(2), ..., g(n), ...}, where

f(1) < f(2) < · · · < f(n) < · · · ,

g(1) < g(2) < · · · < g(n) < · · · ,
and

g(n) = f(f(n)) + 1for all n ≥ 1.

Determine f(240).
1978/4. In triangle ABC, AB = AC. A circle is tangent internally to the
circumcircle of triangle ABC and also to sides AB, AC at P,Q, respectively.
Prove that the midpoint of segment PQ is the center of the incircle of triangle
ABC.
1978/5. Let {ak}(k = 1, 2, 3, ..., n, ...) be a sequence of distinct positive
integers. Prove that for all natural numbers n,

n∑

k=1

ak

k2
≥

n∑

k=1

1

k
.

1978/6. An international society has its members from six different countries.
The list of members contains 1978 names, numbered 1, 2, ..., 1978. Prove that
there is at least one member whose number is the sum of the numbers of two
members from his own country, or twice as large as the number of one member
from his own country.
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Twenty-first International Olympiad, 1979
1979/1. Let p and q be natural numbers such that

p

q
= 1− 1

2
+

1

3
− 1

4
+ · · · − 1

1318
+

1

1319
.

Prove that p is divisible by 1979.
1979/2. A prism with pentagons A1A2A3A4A5 and B1B2B3B4B5 as top and
bottom faces is given. Each side of the two pentagons and each of the line-
segments AiBj for all i, j = 1, ..., 5, is colored either red or green. Every
triangle whose vertices are vertices of the prism and whose sides have all
been colored has two sides of a different color. Show that all 10 sides of the
top and bottom faces are the same color.
1979/3. Two circles in a plane intersect. Let A be one of the points of
intersection. Starting simultaneously from A two points move with constant
speeds, each point travelling along its own circle in the same sense. The two
points return to A simultaneously after one revolution. Prove that there is
a fixed point P in the plane such that, at any time, the distances from P to
the moving points are equal.
1979/4. Given a plane π, a point P in this plane and a point Q not in π,
find all points R in π such that the ratio (QP + PA)/QR is a maximum.
1979/5. Find all real numbers a for which there exist non-negative real
numbers x1, x2, x3, x4, x5 satisfying the relations

5∑

k=1

kxk = a,
5∑

k=1

k3xk = a2,
5∑

k=1

k5xk = a3.

1979/6. Let A and E be opposite vertices of a regular octagon. A frog starts
jumping at vertex A. From any vertex of the octagon except E, it may jump
to either of the two adjacent vertices. When it reaches vertex E, the frog
stops and stays there.. Let an be the number of distinct paths of exactly n
jumps ending at E. Prove that a2n−1 = 0,

a2n =
1√
2
(xn−1 − yn−1), n = 1, 2, 3, · · · ,

where x = 2 +
√

2 and y = 2−√2.
Note. A path of n jumps is a sequence of vertices (P0, ..., Pn) such that
(i) P0 = A,Pn = E;
(ii) for every i, 0 ≤ i ≤ n− 1, Pi is distinct from E;
(iii) for every i, 0 ≤ i ≤ n− 1, Pi and Pi+1 are adjacent.
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Twenty-second International Olympiad, 1981
1981/1. P is a point inside a given triangle ABC.D,E, F are the feet of the
perpendiculars from P to the lines BC,CA, AB respectively. Find all P for
which

BC

PD
+

CA

PE
+

AB

PF

is least.
1981/2. Let 1 ≤ r ≤ n and consider all subsets of r elements of the set
{1, 2, ..., n}. Each of these subsets has a smallest member. Let F (n, r) denote
the arithmetic mean of these smallest numbers; prove that

F (n, r) =
n + 1

r + 1
.

1981/3. Determine the maximum value of m3+n3,where m and n are integers
satisfying m,n ∈ {1, 2, ..., 1981} and (n2 −mn−m2)2 = 1.
1981/4. (a) For which values of n > 2 is there a set of n consecutive positive
integers such that the largest number in the set is a divisor of the least
common multiple of the remaining n− 1 numbers?
(b) For which values of n > 2 is there exactly one set having the stated
property?
1981/5. Three congruent circles have a common point O and lie inside a
given triangle. Each circle touches a pair of sides of the triangle. Prove
that the incenter and the circumcenter of the triangle and the point O are
collinear.
1981/6. The function f(x, y) satisfies
(1) f(0, y) = y + 1,
(2)f(x + 1, 0) = f(x, 1),
(3) f(x + 1, y + 1) = f(x, f(x + 1, y)),
for all non-negative integers x, y. Determine f(4, 1981).
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Twenty-third International Olympiad, 1982
1982/1. The function f(n) is defined for all positive integers n and takes on
non-negative integer values. Also, for all m,n

f(m + n)− f(m)− f(n) = 0 or 1

f(2) = 0, f(3) > 0, and f(9999) = 3333.

Determine f(1982).
1982/2. A non-isosceles triangle A1A2A3 is given with sides a1, a2, a3 (ai is
the side opposite Ai). For all i = 1, 2, 3,Mi is the midpoint of side ai, and Ti.
is the point where the incircle touches side ai. Denote by Si the reflection
of Ti in the interior bisector of angle Ai. Prove that the lines M1, S1, M2S2,
and M3S3 are concurrent.
1982/3. Consider the infinite sequences {xn} of positive real numbers with
the following properties:

x0 = 1, and for all i ≥ 0, xi+1 ≤ xi.

(a) Prove that for every such sequence, there is an n ≥ 1 such that

x2
0

x1

+
x2

1

x2

+ · · ·+ x2
n−1

xn

≥ 3.999.

(b) Find such a sequence for which

x2
0

x1

+
x2

1

x2

+ · · ·+ x2
n−1

xn

< 4.

1982/4. Prove that if n is a positive integer such that the equation

x3 − 3xy2 + y3 = n

has a solution in integers (x, y), then it has at least three such solutions.
Show that the equation has no solutions in integers when n = 2891.
1982/5. The diagonals AC and CE of the regular hexagon ABCDEF are
divided by the inner points M and N , respectively, so that

AM

AC
=

CN

CE
= r.

Determine r if B, M, and N are collinear.
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1982/6. Let S be a square with sides of length 100, and let L be a path
within S which does not meet itself and which is composed of line segments
A0A1, A1A2, · · · , An−1An with A0 6= An. Suppose that for every point P of
the boundary of S there is a point of L at a distance from P not greater than
1/2. Prove that there are two points X and Y in L such that the distance
between X and Y is not greater than 1, and the length of that part of L
which lies between X and Y is not smaller than 198.
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Twenty-fourth International Olympiad, 1983
1983/1. Find all functions f defined on the set of positive real numbers which
take positive real values and satisfy the conditions:
(i) f(xf(y)) = yf(x) for all positive x, y;
(ii) f(x) → 0 as x →∞.
1983/2. Let A be one of the two distinct points of intersection of two unequal
coplanar circles C1 and C2 with centers O1 and O2, respectively. One of the
common tangents to the circles touches C1 at P1 and C2 at P2, while the
other touches C1 at Q1 and C2 at Q2. Let M1 be the midpoint of P1Q1,and
M2 be the midpoint of P2Q2. Prove that 6 O1AO2 = 6 M1AM2.
1983/3. Let a, b and c be positive integers, no two of which have a common
divisor greater than 1. Show that 2abc − ab − bc − ca is the largest integer
which cannot be expressed in the form xbc + yca + zab,where x, y and z are
non-negative integers.
1983/4. Let ABC be an equilateral triangle and E the set of all points
contained in the three segments AB,BC and CA (including A,B and C).
Determine whether, for every partition of E into two disjoint subsets, at least
one of the two subsets contains the vertices of a right-angled triangle. Justify
your answer.
1983/5. Is it possible to choose 1983 distinct positive integers, all less than
or equal to 105, no three of which are consecutive terms of an arithmetic
progression? Justify your answer.
1983/6. Let a, b and c be the lengths of the sides of a triangle. Prove that

a2b(a− b) + b2c(b− c) + c2a(c− a) ≥ 0.

Determine when equality occurs.
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Twenty-fifth International Olympiad, 1984
1984/1. Prove that 0 ≤ yz + zx + xy − 2xyz ≤ 7/27, where x, y and z are
non-negative real numbers for which x + y + z = 1.
1984/2. Find one pair of positive integers a and b such that:
(i) ab(a + b) is not divisible by 7;
(ii) (a + b)7 − a7 − b7 is divisible by 77 .
Justify your answer.
1984/3. In the plane two different points O and A are given. For each
point X of the plane, other than O, denote by a(X) the measure of the angle
between OA and OX in radians, counterclockwise from OA(0 ≤ a(X) < 2π).
Let C(X) be the circle with center O and radius of length OX + a(X)/OX.
Each point of the plane is colored by one of a finite number of colors. Prove
that there exists a point Y for which a(Y ) > 0 such that its color appears
on the circumference of the circle C(Y ).
1984/4. Let ABCD be a convex quadrilateral such that the line CD is a
tangent to the circle on AB as diameter. Prove that the line AB is a tangent
to the circle on CD as diameter if and only if the lines BC and AD are
parallel.
1984/5. Let d be the sum of the lengths of all the diagonals of a plane convex
polygon with n vertices (n > 3), and let p be its perimeter. Prove that

n− 3 <
2d

p
<

[
n

2

] [
n + 1

2

]
− 2,

where [x] denotes the greatest integer not exceeding x.
1984/6. Let a, b, c and d be odd integers such that 0 < a < b < c < d and
ad = bc. Prove that if a + d = 2k and b + c = 2m for some integers k and m,
then a = 1.
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Twenty-sixth International Olympiad, 1985
1985/1. A circle has center on the side AB of the cyclic quadrilateral ABCD.
The other three sides are tangent to the circle. Prove that AD + BC = AB.
1985/2. Let n and k be given relatively prime natural numbers, k < n. Each
number in the set M = {1, 2, ..., n− 1} is colored either blue or white. It is
given that
(i) for each i ∈ M, both i and n− i have the same color;
(ii) for each i ∈ M, i 6= k, both i and |i− k| have the same color. Prove that
all numbers in M must have the same color.
1985/3. For any polynomial P (x) = a0 + a1x + · · · + akx

k with integer
coefficients, the number of coefficients which are odd is denoted by w(P ).
For i = 0, 1, ..., let Qi(x) = (1 + x)i. Prove that if i1i2, ..., in are integers such
that 0 ≤ i1 < i2 < · · · < in, then

w(Qi1 + Qi2 , + + Qin) ≥ w(Qi1).

1985/4. Given a set M of 1985 distinct positive integers, none of which has
a prime divisor greater than 26. Prove that M contains at least one subset
of four distinct elements whose product is the fourth power of an integer.
1985/5. A circle with center O passes through the vertices A and C of triangle
ABC and intersects the segments AB and BC again at distinct points K and
N, respectively. The circumscribed circles of the triangles ABC and EBN
intersect at exactly two distinct points B and M. Prove that angle OMB is
a right angle.
1985/6. For every real number x1, construct the sequence x1, x2, ... by setting

xn+1 = xn

(
xn +

1

n

)
for each n ≥ 1.

Prove that there exists exactly one value of x1 for which

0 < xn < xn+1 < 1

for every n.
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27th International Mathematical Olympiad

Warsaw, Poland

Day I

July 9, 1986

1. Let d be any positive integer not equal to 2, 5, or 13. Show that one can find
distinct a, b in the set {2, 5, 13, d} such that ab− 1 is not a perfect square.

2. A triangle A1A2A3 and a point P0 are given in the plane. We define As = As−3

for all s ≥ 4. We construct a set of points P1, P2, P3, . . . , such that Pk+1 is
the image of Pk under a rotation with center Ak+1 through angle 120◦ clockwise
(for k = 0, 1, 2, . . . ). Prove that if P1986 = P0, then the triangle A1A2A3 is
equilateral.

3. To each vertex of a regular pentagon an integer is assigned in such a way that
the sum of all five numbers is positive. If three consecutive vertices are assigned
the numbers x, y, z respectively and y < 0 then the following operation is
allowed: the numbers x, y, z are replaced by x+ y, −y, z + y respectively. Such
an operation is performed repeatedly as long as at least one of the five numbers
is negative. Determine whether this procedure necessarily comes to and end
after a finite number of steps.
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27th International Mathematical Olympiad

Warsaw, Poland

Day II

July 10, 1986

4. Let A, B be adjacent vertices of a regular n-gon (n ≥ 5) in the plane having
center at O. A triangle XY Z, which is congruent to and initially conincides
with OAB, moves in the plane in such a way that Y and Z each trace out the
whole boundary of the polygon, X remaining inside the polygon. Find the locus
of X.

5. Find all functions f , defined on the non-negative real numbers and taking non-
negative real values, such that:

(i) f(xf(y))f(y) = f(x + y) for all x, y ≥ 0,

(ii) f(2) = 0,

(iii) f(x) 6= 0 for 0 ≤ x < 2.

6. One is given a finite set of points in the plane, each point having integer coor-
dinates. Is it always possible to color some of the points in the set red and the
remaining points white in such a way that for any straight line L parallel to
either one of the coordinate axes the difference (in absolute value) between the
numbers of white point and red points on L is not greater than 1?

47



28th International Mathematical Olympiad

Havana, Cuba

Day I

July 10, 1987

1. Let pn(k) be the number of permutations of the set {1, . . . , n}, n ≥ 1, which
have exactly k fixed points. Prove that

n∑

k=0

k · pn(k) = n!.

(Remark: A permutation f of a set S is a one-to-one mapping of S onto itself.
An element i in S is called a fixed point of the permutation f if f(i) = i.)

2. In an acute-angled triangle ABC the interior bisector of the angle A intersects
BC at L and intersects the circumcircle of ABC again at N . From point L
perpendiculars are drawn to AB and AC, the feet of these perpendiculars being
K and M respectively. Prove that the quadrilateral AKNM and the triangle
ABC have equal areas.

3. Let x1, x2, . . . , xn be real numbers satisfying x2
1 +x2

2 + · · ·+x2
n = 1. Prove that

for every integer k ≥ 2 there are integers a1, a2, . . . , an, not all 0, such that
|ai| ≤ k − 1 for all i and

|a1x1 + a1x2 + · · ·+ anxn| ≤ (k − 1)
√

n

kn − 1
.
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28th International Mathematical Olympiad

Havana, Cuba

Day II

July 11, 1987

4. Prove that there is no function f from the set of non-negative integers into itself
such that f(f(n)) = n + 1987 for every n.

5. Let n be an integer greater than or equal to 3. Prove that there is a set of n
points in the plane such that the distance between any two points is irrational
and each set of three points determines a non-degenerate triangle with rational
area.

6. Let n be an integer greater than or equal to 2. Prove that if k2 + k +n is prime
for all integers k such that 0 ≤ k ≤

√
n/3, then k2 + k + n is prime for all

integers k such that 0 ≤ k ≤ n− 2.
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29th International Mathematical Olympiad

Canberra, Australia

Day I

1. Consider two coplanar circles of radii R and r (R > r) with the same center.
Let P be a fixed point on the smaller circle and B a variable point on the larger
circle. The line BP meets the larger circle again at C. The perpendicular l to
BP at P meets the smaller circle again at A. (If l is tangent to the circle at P
then A = P .)

(i) Find the set of values of BC2 + CA2 + AB2.

(ii) Find the locus of the midpoint of BC.

2. Let n be a positive integer and let A1, A2, . . . , A2n+1 be subsets of a set B.
Suppose that

(a) Each Ai has exactly 2n elements,

(b) Each Ai ∩ Aj (1 ≤ i < j ≤ 2n + 1) contains exactly one element, and

(c) Every element of B belongs to at least two of the Ai.

For which values of n can one assign to every element of B one of the numbers
0 and 1 in such a way that Ai has 0 assigned to exactly n of its elements?

3. A function f is defined on the positive integers by

f(1) = 1, f(3) = 3,

f(2n) = f(n),

f(4n + 1) = 2f(2n + 1)− f(n),

f(4n + 3) = 3f(2n + 1)− 2f(n),

for all positive integers n.

Determine the number of positive integers n, less than or equal to 1988, for
which f(n) = n.
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29th International Mathematical Olympiad

Canberra, Australia

Day II

4. Show that set of real numbers x which satisfy the inequality

70∑

k=1

k

x− k
≥ 5

4

is a union of disjoint intervals, the sum of whose lengths is 1988.

5. ABC is a triangle right-angled at A, and D is the foot of the altitude from A.
The straight line joining the incenters of the triangles ABD, ACD intersects
the sides AB, AC at the points K, L respectively. S and T denote the areas of
the triangles ABC and AKL respectively. Show that S ≥ 2T .

6. Let a and b be positive integers such that ab + 1 divides a2 + b2. Show that

a2 + b2

ab + 1

is the square of an integer.
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30th International Mathematical Olympiad

Braunschweig, Germany

Day I

1. Prove that the set {1, 2, . . . , 1989} can be expressed as the disjoint union of
subsets Ai (i = 1, 2, . . . , 117) such that:

(i) Each Ai contains 17 elements;

(ii) The sum of all the elements in each Ai is the same.

2. In an acute-angled triangle ABC the internal bisector of angle A meets the
circumcircle of the triangle again at A1. Points B1 and C1 are defined similarly.
Let A0 be the point of intersection of the line AA1 with the external bisectors
of angles B and C. Points B0 and C0 are defined similarly. Prove that:

(i) The area of the triangle A0B0C0 is twice the area of the hexagon AC1BA1CB1.

(ii) The area of the triangle A0B0C0 is at least four times the area of the
triangle ABC.

3. Let n and k be positive integers and let S be a set of n points in the plane such
that

(i) No three points of S are collinear, and

(ii) For any point P of S there are at least k points of S equidistant from P .

Prove that:

k <
1

2
+
√

2n.

52



30th International Mathematical Olympiad

Braunschweig, Germany

Day II

4. Let ABCD be a convex quadrilateral such that the sides AB, AD, BC satisfy
AB = AD + BC. There exists a point P inside the quadrilateral at a distance
h from the line CD such that AP = h + AD and BP = h + BC. Show that:

1√
h
≥ 1√

AD
+

1√
BC

.

5. Prove that for each positive integer n there exist n consecutive positive integers
none of which is an integral power of a prime number.

6. A permutation (x1, x2, . . . , xm) of the set {1, 2, . . . , 2n}, where n is a positive
integer, is said to have property P if |xi − xi+1| = n for at least one i in
{1, 2, . . . , 2n − 1}. Show that, for each n, there are more permutations with
property P than without.
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31st International Mathematical Olympiad

Beijing, China

Day I

July 12, 1990

1. Chords AB and CD of a circle intersect at a point E inside the circle. Let M
be an interior point of the segment EB. The tangent line at E to the circle
through D, E, and M intersects the lines BC and AC at F and G, respectively.
If

AM

AB
= t,

find
EG

EF

in terms of t.

2. Let n ≥ 3 and consider a set E of 2n − 1 distinct points on a circle. Suppose
that exactly k of these points are to be colored black. Such a coloring is “good”
if there is at least one pair of black points such that the interior of one of the
arcs between them contains exactly n points from E. Find the smallest value
of k so that every such coloring of k points of E is good.

3. Determine all integers n > 1 such that

2n + 1

n2

is an integer.
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31st International Mathematical Olympiad

Beijing, China

Day II

July 13, 1990

4. Let Q+ be the set of positive rational numbers. Construct a function f : Q+ →
Q+ such that

f(xf(y)) =
f(x)

y

for all x, y in Q+.

5. Given an initial integer n0 > 1, two players, A and B, choose integers n1, n2,
n3, . . . alternately according to the following rules:

Knowing n2k, A chooses any integer n2k+1 such that

n2k ≤ n2k+1 ≤ n2
2k.

Knowing n2k+1, B chooses any integer n2k+2 such that

n2k+1

n2k+2

is a prime raised to a positive integer power.

PlayerA wins the game by choosing the number 1990; player B wins by choosing
the number 1. For which n0 does:

(a) A have a winning strategy?

(b) B have a winning strategy?

(c) Neither player have a winning strategy?

6. Prove that there exists a convex 1990-gon with the following two properties:

(a) All angles are equal.

(b) The lengths of the 1990 sides are the numbers 12, 22, 32, . . . , 19902 in some
order.
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33rd International Mathematical Olympiad

First Day - Moscow - July 15, 1992
Time Limit: 41

2
hours

1. Find all integers a, b, c with 1 < a < b < c such that

(a− 1)(b− 1)(c− 1) is a divisor of abc− 1.

2. Let R denote the set of all real numbers. Find all functions f : R → R
such that

f
(
x2 + f(y)

)
= y + (f(x))2 for all x, y ∈ R.

3. Consider nine points in space, no four of which are coplanar. Each pair
of points is joined by an edge (that is, a line segment) and each edge is
either colored blue or red or left uncolored. Find the smallest value of
n such that whenever exactly n edges are colored, the set of colored
edges necessarily contains a triangle all of whose edges have the same
color.

33rd International Mathematical Olympiad

Second Day - Moscow - July 15, 1992
Time Limit: 41

2
hours

1. In the plane let C be a circle, L a line tangent to the circle C, and
M a point on L. Find the locus of all points P with the following
property: there exists two points Q,R on L such that M is the
midpoint of QR and C is the inscribed circle of triangle PQR.

2. Let S be a finite set of points in three-dimensional space. Let Sx, Sy, Sz

be the sets consisting of the orthogonal projections of the points of S
onto the yz-plane, zx-plane, xy-plane, respectively. Prove that

|S|2 ≤ |Sx| · |Sy| · |Sz|,

where |A| denotes the number of elements in the finite set |A|. (Note:
The orthogonal projection of a point onto a plane is the foot of the
perpendicular from that point to the plane.)
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3. For each positive integer n, S(n) is defined to be the greatest integer
such that, for every positive integer k ≤ S(n), n2 can be written as
the sum of k positive squares.

(a) Prove that S(n) ≤ n2 − 14 for each n ≥ 4.

(b) Find an integer n such that S(n) = n2 − 14.

(c) Prove that there are infintely many integers n such that S(n) =
n2 − 14.
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34nd International Mathematical Olympiad

First Day July 18, 1993
Time Limit: 41

2
hours

1. Let f(x) = xn + 5xn−1 + 3, where n > 1 is an integer. Prove that f(x)
cannot be expressed as the product of two nonconstant polynomials
with integer coefficients.

2. Let D be a point inside acute triangle ABC such that 6 ADB =
6 ACB + π/2 and AC ·BD = AD ·BC.

(a) Calculate the ratio (AB · CD)/(AC ·BD).

(b) Prove that the tangents at C to the circumcircles of 4ACD and
4BCD are perpendicular.

3. On an infinite chessboard, a game is played as follows. At the start, n2

pieces are arranged on the chessboard in an n by n block of adjoining
squares, one piece in each square. A move in the game is a jump in
a horizontal or vertical direction over an adjacent occupied square to
an unoccupied square immediately beyond. The piece which has been
jumped over is removed.

Find those values of n for which the game can end with only one piece
remaining on the board.

Second Day July 19, 1993
Time Limit: 41

2
hours

1. For three points P, Q,R in the plane, we define m(PQR) as the min-
imum length of the three altitudes of 4PQR. (If the points are
collinear, we set m(PQR) = 0.)

Prove that for points A,B,C, X in the plane,

m(ABC) ≤ m(ABX) + m(AXC) + m(XBC).

2. Does there exist a function f : N → N such that f(1) = 2, f(f(n)) =
f(n) + n for all n ∈ N, and f(n) < f(n + 1) for all n ∈ N?
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3. There are n lamps L0, . . . , Ln−1 in a circle (n > 1), where we denote
Ln+k = Lk. (A lamp at all times is either on or off.) Perform steps
s0, s1, . . . as follows: at step si, if Li−1 is lit, switch Li from on to off or
vice versa, otherwise do nothing. Initially all lamps are on. Show that:

(a) There is a positive integer M(n) such that after M(n) steps all
the lamps are on again;

(b) If n = 2k, we can take M(n) = n2 − 1;

(c) If n = 2k + 1, we can take M(n) = n2 − n + 1.
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The 35th International Mathematical Olympiad (July 13-14,
1994, Hong Kong)

1. Let m and n be positive integers. Let a1, a2, . . . , am be distinct elements
of {1, 2, . . . , n} such that whenever ai + aj ≤ n for some i, j, 1 ≤ i ≤ j ≤ m,
there exists k, 1 ≤ k ≤ m, with ai + aj = ak. Prove that

a1 + a2 + · · ·+ am

m
≥ n + 1

2
.

2. ABC is an isosceles triangle with AB = AC. Suppose that

1. M is the midpoint of BC and O is the point on the line AM such that
OB is perpendicular to AB;

2. Q is an arbitrary point on the segment BC different from B and C;

3. E lies on the line AB and F lies on the line AC such that E, Q, F are
distinct and collinear.

Prove that OQ is perpendicular to EF if and only if QE = QF .
3. For any positive integer k, let f(k) be the number of elements in the set
{k + 1, k + 2, . . . , 2k} whose base 2 representation has precisely three 1s.

• (a) Prove that, for each positive integer m, there exists at least one
positive integer k such that f(k) = m.

• (b) Determine all positive integers m for which there exists exactly one
k with f(k) = m.

4. Determine all ordered pairs (m,n) of positive integers such that

n3 + 1

mn− 1

is an integer.
5. Let S be the set of real numbers strictly greater than −1. Find all
functions f : S → S satisfying the two conditions:

1. f(x + f(y) + xf(y)) = y + f(x) + yf(x) for all x and y in S;

2. f(x)
x

is strictly increasing on each of the intervals −1 < x < 0 and 0 < x.

6. Show that there exists a set A of positive integers with the following
property: For any infinite set S of primes there exist two positive integers
m ∈ A and n /∈ A each of which is a product of k distinct elements of S for
some k ≥ 2.
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36th International Mathematical Olympiad

First Day - Toronto - July 19, 1995
Time Limit: 41

2
hours

1. Let A,B, C, D be four distinct points on a line, in that order. The
circles with diameters AC and BD intersect at X and Y . The line XY
meets BC at Z. Let P be a point on the line XY other than Z. The
line CP intersects the circle with diameter AC at C and M , and the
line BP intersects the circle with diameter BD at B and N . Prove
that the lines AM,DN,XY are concurrent.

2. Let a, b, c be positive real numbers such that abc = 1. Prove that

1

a3(b + c)
+

1

b3(c + a)
+

1

c3(a + b)
≥ 3

2
.

3. Determine all integers n > 3 for which there exist n points A1, . . . , An

in the plane, no three collinear, and real numbers r1, . . . , rn such that
for 1 ≤ i < j < k ≤ n, the area of 4AiAjAk is ri + rj + rk.

36th International Mathematical Olympiad

Second Day - Toronto - July 20, 1995
Time Limit: 41

2
hours

1. Find the maximum value of x0 for which there exists a sequence x0, x1 . . . , x1995

of positive reals with x0 = x1995, such that for i = 1, . . . , 1995,

xi−1 +
2

xi−1

= 2xi +
1

xi

.

2. Let ABCDEF be a convex hexagon with AB = BC = CD and DE =
EF = FA, such that 6 BCD = 6 EFA = π/3. Suppose G and H are
points in the interior of the hexagon such that 6 AGB = 6 DHE =
2π/3. Prove that AG + GB + GH + DH + HE ≥ CF .

3. Let p be an odd prime number. How many p-element subsets A of
{1, 2, . . . 2p} are there, the sum of whose elements is divisible by p?
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37th International Mathematical Olympiad

Mumbai, India

Day I 9 a.m. - 1:30 p.m.

July 10, 1996

1. We are given a positive integer r and a rectangular board ABCD with
dimensions |AB| = 20, |BC| = 12. The rectangle is divided into a grid
of 20 × 12 unit squares. The following moves are permitted on the
board: one can move from one square to another only if the distance
between the centers of the two squares is

√
r. The task is to find a

sequence of moves leading from the square with A as a vertex to the
square with B as a vertex.

(a) Show that the task cannot be done if r is divisible by 2 or 3.

(b) Prove that the task is possible when r = 73.

(c) Can the task be done when r = 97?

2. Let P be a point inside triangle ABC such that

6 APB − 6 ACB = 6 APC − 6 ABC.

Let D, E be the incenters of triangles APB,APC, respectively. Show
that AP, BD,CE meet at a point.

3. Let S denote the set of nonnegative integers. Find all functions f from
S to itself such that

f(m + f(n)) = f(f(m)) + f(n) ∀m,n ∈ S.

37th International Mathematical Olympiad

Mumbai, India

Day II 9 a.m. - 1:30 p.m.

July 11, 1996
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1. The positive integers a and b are such that the numbers 15a + 16b
and 16a− 15b are both squares of positive integers. What is the least
possible value that can be taken on by the smaller of these two squares?

2. Let ABCDEF be a convex hexagon such that AB is parallel to DE,
BC is parallel to EF , and CD is parallel to FA. Let RA, RC , RE denote
the circumradii of triangles FAB, BCD, DEF , respectively, and let P
denote the perimeter of the hexagon. Prove that

RA + RC + RE ≥ P

2
.

3. Let p, q, n be three positive integers with p+q < n. Let (x0, x1, . . . , xn)
be an (n + 1)-tuple of integers satisfying the following conditions:

(a) x0 = xn = 0.

(b) For each i with 1 ≤ i ≤ n, either xi − xi−1 = p or xi − xi−1 = −q.

Show that there exist indices i < j with (i, j) 6= (0, n), such that
xi = xj.
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38th International Mathematical Olympiad

Mar del Plata, Argentina

Day I

July 24, 1997

1. In the plane the points with integer coordinates are the vertices of unit squares.
The squares are colored alternately black and white (as on a chessboard).

For any pair of positive integers m and n, consider a right-angled triangle whose
vertices have integer coordinates and whose legs, of lengths m and n, lie along
edges of the squares.

Let S1 be the total area of the black part of the triangle and S2 be the total
area of the white part. Let

f(m,n) = |S1 − S2|.

(a) Calculate f(m,n) for all positive integers m and n which are either both
even or both odd.

(b) Prove that f(m,n) ≤ 1
2
max{m, n} for all m and n.

(c) Show that there is no constant C such that f(m,n) < C for all m and n.

2. The angle at A is the smallest angle of triangle ABC. The points B and C
divide the circumcircle of the triangle into two arcs. Let U be an interior point
of the arc between B and C which does not contain A. The perpendicular
bisectors of AB and AC meet the line AU at V and W , respectively. The lines
BV and CW meet at T . Show that

AU = TB + TC.

3. Let x1, x2, . . . , xn be real numbers satisfying the conditions

|x1 + x2 + · · ·+ xn| = 1

and

|xi| ≤ n + 1

2
i = 1, 2, . . . , n.

Show that there exists a permutation y1, y2, . . . , yn of x1, x2, . . . , xn such that

|y1 + 2y2 + · · ·+ nyn| ≤ n + 1

2
.
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38th International Mathematical Olympiad

Mar del Plata, Argentina

Day II

July 25, 1997

4. An n × n matrix whose entries come from the set S = {1, 2, . . . , 2n − 1} is
called a silver matrix if, for each i = 1, 2, . . . , n, the ith row and the ith column
together contain all elements of S. Show that

(a) there is no silver matrix for n = 1997;

(b) silver matrices exist for infinitely many values of n.

5. Find all pairs (a, b) of integers a, b ≥ 1 that satisfy the equation

ab2 = ba.

6. For each positive integer n , let f(n) denote the number of ways of representing
n as a sum of powers of 2 with nonnegative integer exponents. Representations
which differ only in the ordering of their summands are considered to be the
same. For instance, f(4) = 4, because the number 4 can be represented in the
following four ways:

4; 2 + 2; 2 + 1 + 1; 1 + 1 + 1 + 1.

Prove that, for any integer n ≥ 3,

2n2/4 < f(2n) < 2n2/2.
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39th International Mathematical Olympiad

Taipei, Taiwan

Day I

July 15, 1998

1. In the convex quadrilateral ABCD, the diagonals AC and BD are perpendicular
and the opposite sides AB and DC are not parallel. Suppose that the point P ,
where the perpendicular bisectors of AB and DC meet, is inside ABCD. Prove
that ABCD is a cyclic quadrilateral if and only if the triangles ABP and CDP
have equal areas.

2. In a competition, there are a contestants and b judges, where b ≥ 3 is an odd
integer. Each judge rates each contestant as either “pass” or “fail”. Suppose k
is a number such that, for any two judges, their ratings coincide for at most k
contestants. Prove that k/a ≥ (b− 1)/(2b).

3. For any positive integer n, let d(n) denote the number of positive divisors
of n (including 1 and n itself). Determine all positive integers k such that
d(n2)/d(n) = k for some n.
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39th International Mathematical Olympiad

Taipei, Taiwai

Day II

July 16, 1998

4. Determine all pairs (a, b) of positive integers such that ab2 + b + 7 divides
a2b + a + b.

5. Let I be the incenter of triangle ABC. Let the incircle of ABC touch the sides
BC, CA, and AB at K, L, and M , respectively. The line through B parallel
to MK meets the lines LM and LK at R and S, respectively. Prove that angle
RIS is acute.

6. Consider all functions f from the set N of all positive integers into itself sat-
isfying f(t2f(s)) = s(f(t))2 for all s and t in N . Determine the least possible
value of f(1998).
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40th International Mathematical Olympiad

Bucharest

Day I

July 16, 1999

1. Determine all finite sets S of at least three points in the plane which satisfy the
following condition:

for any two distinct points A and B in S, the perpendicular bisector
of the line segment AB is an axis of symmetry for S.

2. Let n be a fixed integer, with n ≥ 2.

(a) Determine the least constant C such that the inequality

∑
1≤i<j≤n

xixj(x
2
i + x2

j) ≤ C

( ∑
1≤i≤n

xi

)4

holds for all real numbers x1, · · · , xn ≥ 0.

(b) For this constant C, determine when equality holds.

3. Consider an n × n square board, where n is a fixed even positive integer. The
board is divided into n2 unit squares. We say that two different squares on the
board are adjacent if they have a common side.

N unit squares on the board are marked in such a way that every square (marked
or unmarked) on the board is adjacent to at least one marked square.

Determine the smallest possible value of N .

68



40th International Mathematical Olympiad

Bucharest

Day II

July 17, 1999

4. Determine all pairs (n, p) of positive integers such that

p is a prime,
n not exceeded 2p, and
(p− 1)n + 1 is divisible by np−1.

5. Two circles G1 and G2 are contained inside the circle G, and are tangent to G
at the distinct points M and N , respectively. G1 passes through the center of
G2. The line passing through the two points of intersection of G1 and G2 meets
G at A and B. The lines MA and MB meet G1 at C and D, respectively.

Prove that CD is tangent to G2.

6. Determine all functions f : R −→ R such that

f(x− f(y)) = f(f(y)) + xf(y) + f(x)− 1

for all real numbers x, y.
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41st IMO 2000

Problem 1. AB is tangent to the circles CAMN and NMBD. M lies
between C and D on the line CD, and CD is parallel to AB. The chords
NA and CM meet at P ; the chords NB and MD meet at Q. The rays CA
and DB meet at E. Prove that PE = QE.

Problem 2. A,B, C are positive reals with product 1. Prove that (A− 1+
1
B )(B − 1 + 1

C )(C − 1 + 1
A) ≤ 1.

Problem 3. k is a positive real. N is an integer greater than 1. N points
are placed on a line, not all coincident. A move is carried out as follows.
Pick any two points A and B which are not coincident. Suppose that A lies
to the right of B. Replace B by another point B′ to the right of A such that
AB′ = kBA. For what values of k can we move the points arbitrarily far to
the right by repeated moves?

Problem 4. 100 cards are numbered 1 to 100 (each card different) and
placed in 3 boxes (at least one card in each box). How many ways can this
be done so that if two boxes are selected and a card is taken from each, then
the knowledge of their sum alone is always sufficient to identify the third
box?

Problem 5. Can we find N divisible by just 2000 different primes, so that
N divides 2N + 1? [N may be divisible by a prime power.]

Problem 6. A1A2A3 is an acute-angled triangle. The foot of the altitude
from Ai is Ki and the incircle touches the side opposite Ai at Li. The line
K1K2 is reflected in the line L1L2. Similarly, the line K2K3 is reflected in
L2L3 and K3K1 is reflected in L3L1. Show that the three new lines form a
triangle with vertices on the incircle.

1
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42nd International Mathematical Olympiad

Washington, DC, United States of America

July 8–9, 2001

Problems

Each problem is worth seven points. 

Problem 1

Let ABC  be an acute-angled triangle with circumcentre O . Let P  on BC  be the foot of the altitude from A . 

Suppose that �BCA � �ABC � 30� . 

Prove that �CAB � �COP � 90� .  

Problem 2

Prove that 

a
�������������������������������������������������������

a2 � 8�b�c
�

b
�������������������������������������������������������

b2 � 8�c�a
�

c
�������������������������������������������������������

c2 � 8�a�b
� 1

for all positive real numbers a, b  and c . 

Problem 3

Twenty-one girls and twenty-one boys took part in a mathematical contest. 

•  Each contestant solved at most six problems. 
•  For each girl and each boy, at least one problem was solved by both of them. 

Prove that there was a problem that was solved by at least three girls and at least three boys. 

Problem 4

Let n  be an odd integer greater than 1, and let k1 , k2 , …, kn  be given integers. For each of the n�  permutations 
a � �a1 , a2 , …, an �  of 1, 2, …, n , let 

S��a� ��
i�1

n

ki �ai .

Prove that there are two permutations b  and c , b 	 c , such that n �  is a divisor of S�b�
 S�c� . 

http://imo.wolfram.com/
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Problem 5

In a triangle ABC , let AP  bisect �BAC , with P  on BC , and let BQ  bisect �ABC , with Q  on CA . 

It is known that �BAC � 60�  and that AB � BP � AQ � QB . 

What are the possible angles of triangle ABC? 

Problem 6

Let a, b, c, d  be integers with a � b � c � d � 0. Suppose that 

a�c � b�d � �b � d � a 
 c���b � d 
 a � c�.
Prove that a�b � c�d  is not prime. 

2 IMO 2001 Competition Problems

http://imo.wolfram.com/
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43rd IMO 2002

Problem 1. S is the set of all (h, k) with h, k non-negative integers such
that h + k < n. Each element of S is colored red or blue, so that if (h, k)
is red and h′ ≤ h, k′ ≤ k, then (h′, k′) is also red. A type 1 subset of S has
n blue elements with different first member and a type 2 subset of S has n
blue elements with different second member. Show that there are the same
number of type 1 and type 2 subsets.

Problem 2. BC is a diameter of a circle center O. A is any point on
the circle with 6 AOC > 60o. EF is the chord which is the perpendicular
bisector of AO. D is the midpoint of the minor arc AB. The line through
O parallel to AD meets AC at J . Show that J is the incenter of triangle
CEF .

Problem 3. Find all pairs of integers m > 2, n > 2 such that there are
infinitely many positive integers k for which kn + k2 − 1 divides km + k− 1.

Problem 4. The positive divisors of the integer n > 1 are d1 < d2 < . . . <
dk, so that d1 = 1, dk = n. Let d = d1d2 + d2d3 + · · · + dk−1dk. Show that
d < n2 and find all n for which d divides n2.

Problem 5. Find all real-valued functions on the reals such that (f(x) +
f(y))((f(u) + f(v)) = f(xu− yv) + f(xv + yu) for all x, y, u, v.

Problem 6. n > 2 circles of radius 1 are drawn in the plane so that no line
meets more than two of the circles. Their centers are O1, O2, · · · , On. Show
that

∑
i<j 1/OiOj ≤ (n− 1)π/4.

1
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44th IMO 2003

Problem 1. S is the set {1, 2, 3, . . . , 1000000}. Show that for any subset A
of S with 101 elements we can find 100 distinct elements xi of S, such that
the sets {a + xi|a ∈ A} are all pairwise disjoint.

Problem 2. Find all pairs (m,n) of positive integers such that m2

2mn2−n3+1
is a positive integer.

Problem 3. A convex hexagon has the property that for any pair of opposite
sides the distance between their midpoints is

√
3/2 times the sum of their

lengths Show that all the hexagon’s angles are equal.

Problem 4. ABCD is cyclic. The feet of the perpendicular from D to the
lines AB,BC,CA are P,Q,R respectively. Show that the angle bisectors of
ABC and CDA meet on the line AC iff RP = RQ.

Problem 5. Given n > 2 and reals x1 ≤ x2 ≤ · · · ≤ xn, show that
(
∑

i,j |xi − xj |)2 ≤ 2
3(n2 − 1)

∑
i,j(xi − xj)2. Show that we have equality iff

the sequence is an arithmetic progression.

Problem 6. Show that for each prime p, there exists a prime q such that
np − p is not divisible by q for any positive integer n.

1
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45rd IMO 2004

Problem 1. Let ABC be an acute-angled triangle with AB 6= AC. The
circle with diameter BC intersects the sides AB and AC at M and N
respectively. Denote by O the midpoint of the side BC. The bisectors of
the angles 6 BAC and 6 MON intersect at R. Prove that the circumcircles
of the triangles BMR and CNR have a common point lying on the side
BC.

Problem 2. Find all polynomials f with real coefficients such that for all
reals a,b,c such that ab + bc + ca = 0 we have the following relations

f(a− b) + f(b− c) + f(c− a) = 2f(a + b + c).

Problem 3. Define a ”hook” to be a figure made up of six unit squares
as shown below in the picture, or any of the figures obtained by applying
rotations and reflections to this figure.

Determine all m×n rectangles that can be covered without gaps and without
overlaps with hooks such that

• the rectangle is covered without gaps and without overlaps

• no part of a hook covers area outside the rectagle.

Problem 4. Let n ≥ 3 be an integer. Let t1, t2, ..., tn be positive real
numbers such that

n2 + 1 > (t1 + t2 + ... + tn)
(

1
t1

+
1
t2

+ ... +
1
tn

)
.

Show that ti, tj , tk are side lengths of a triangle for all i, j, k with
1 ≤ i < j < k ≤ n.

Problem 5. In a convex quadrilateral ABCD the diagonal BD does not
bisect the angles ABC and CDA. The point P lies inside ABCD and
satisfies

6 PBC = 6 DBA and 6 PDC = 6 BDA.

Prove that ABCD is a cyclic quadrilateral if and only if AP = CP .

1
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Problem 6. We call a positive integer alternating if every two consecutive
digits in its decimal representation are of different parity.
Find all positive integers n such that n has a multiple which is alternating.

2
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46rd IMO 2005

Problem 1. Six points are chosen on the sides of an equilateral triangle
ABC: A1, A2 on BC, B1, B2 on CA and C1, C2 on AB, such that they are
the vertices of a convex hexagon A1A2B1B2C1C2 with equal side lengths.
Prove that the lines A1B2, B1C2 and C1A2 are concurrent.

Problem 2. Let a1, a2, . . . be a sequence of integers with infinitely many
positive and negative terms. Suppose that for every positive integer n the
numbers a1, a2, . . . , an leave n different remainders upon division by n.
Prove that every integer occurs exactly once in the sequence a1, a2, . . ..

Problem 3. Let x, y, z be three positive reals such that xyz ≥ 1. Prove
that

x5 − x2

x5 + y2 + z2
+

y5 − y2

x2 + y5 + z2
+

z5 − z2

x2 + y2 + z5
≥ 0.

Problem 4. Determine all positive integers relatively prime to all the terms
of the infinite sequence

an = 2n + 3n + 6n − 1, n ≥ 1.

Problem 5. Let ABCD be a fixed convex quadrilateral with BC = DA
and BC not parallel with DA. Let two variable points E and F lie of the
sides BC and DA, respectively and satisfy BE = DF . The lines AC and
BD meet at P , the lines BD and EF meet at Q, the lines EF and AC meet
at R.
Prove that the circumcircles of the triangles PQR, as E and F vary, have a
common point other than P .

Problem 6. In a mathematical competition, in which 6 problems were
posed to the participants, every two of these problems were solved by more
than 2

5 of the contestants. Moreover, no contestant solved all the 6 problems.
Show that there are at least 2 contestants who solved exactly 5 problems
each.

1
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12 July 2006

Problem 1. Let ABC be a triangle with incentre I. A point P in the interior of the
triangle satisfies

6 PBA + 6 PCA = 6 PBC + 6 PCB.

Show that AP ≥ AI, and that equality holds if and only if P = I.

Problem 2. Let P be a regular 2006-gon. A diagonal of P is called good if its endpoints
divide the boundary of P into two parts, each composed of an odd number of sides of P .
The sides of P are also called good .

Suppose P has been dissected into triangles by 2003 diagonals, no two of which have
a common point in the interior of P . Find the maximum number of isosceles triangles
having two good sides that could appear in such a configuration.

Problem 3. Determine the least real number M such that the inequality∣∣∣ ab(a2 − b2) + bc(b2 − c2) + ca(c2 − a2)
∣∣∣ ≤M(a2 + b2 + c2)2

holds for all real numbers a, b and c.

Time allowed: 4 hours 30 minutes
Each problem is worth 7 points

language: English

day: 1
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13 July 2006

Problem 4. Determine all pairs (x, y) of integers such that

1 + 2x + 22x+1 = y2.

Problem 5. Let P (x) be a polynomial of degree n > 1 with integer coefficients and let
k be a positive integer. Consider the polynomial Q(x) = P (P (. . . P (P (x)) . . .)), where P
occurs k times. Prove that there are at most n integers t such that Q(t) = t.

Problem 6. Assign to each side b of a convex polygon P the maximum area of a triangle
that has b as a side and is contained in P . Show that the sum of the areas assigned to
the sides of P is at least twice the area of P .

Time allowed: 4 hours 30 minutes
Each problem is worth 7 points

language: English

day: 2
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July 25, 2007

Problem 1. Real numbers a1, a2, . . . , an are given. For each i (1 ≤ i ≤ n) define

di = max{aj : 1 ≤ j ≤ i} − min{aj : i ≤ j ≤ n}

and let
d = max{di : 1 ≤ i ≤ n}.

(a) Prove that, for any real numbers x1 ≤ x2 ≤ · · · ≤ xn,

max{|xi − ai| : 1 ≤ i ≤ n} ≥ d

2
. (∗)

(b) Show that there are real numbers x1 ≤ x2 ≤ · · · ≤ xn such that equality holds
in (∗).

Problem 2. Consider five points A, B, C,D and E such that ABCD is a parallelogram
and BCED is a cyclic quadrilateral. Let ` be a line passing through A. Suppose that
` intersects the interior of the segment DC at F and intersects line BC at G. Suppose
also that EF = EG = EC. Prove that ` is the bisector of angle DAB.

Problem 3. In a mathematical competition some competitors are friends. Friendship
is always mutual. Call a group of competitors a clique if each two of them are friends. (In
particular, any group of fewer than two competitors is a clique.) The number of members
of a clique is called its size.

Given that, in this competition, the largest size of a clique is even, prove that the
competitors can be arranged in two rooms such that the largest size of a clique contained
in one room is the same as the largest size of a clique contained in the other room.

Time allowed: 4 hours 30 minutes
Each problem is worth 7 points
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Language: English

July 26, 2007

Problem 4. In triangle ABC the bisector of angle BCA intersects the circumcircle
again at R, the perpendicular bisector of BC at P , and the perpendicular bisector of AC
at Q. The midpoint of BC is K and the midpoint of AC is L. Prove that the triangles
RPK and RQL have the same area.

Problem 5. Let a and b be positive integers. Show that if 4ab− 1 divides (4a2 − 1)2,
then a = b.

Problem 6. Let n be a positive integer. Consider

S = {(x, y, z) : x, y, z ∈ {0, 1, . . . , n}, x + y + z > 0}

as a set of (n+1)3−1 points in three-dimensional space. Determine the smallest possible
number of planes, the union of which contains S but does not include (0, 0, 0).

Time allowed: 4 hours 30 minutes
Each problem is worth 7 points
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Wednesday, July 16, 2008

Problem 1. An acute-angled triangle ABC has orthocentre H. The circle passing through H with
centre the midpoint of BC intersects the line BC at A1 and A2. Similarly, the circle passing through
H with centre the midpoint of CA intersects the line CA at B1 and B2, and the circle passing through
H with centre the midpoint of AB intersects the line AB at C1 and C2. Show that A1, A2, B1, B2,
C1, C2 lie on a circle.

Problem 2. (a) Prove that

x2

(x− 1)2
+

y2

(y − 1)2
+

z2

(z − 1)2
≥ 1

for all real numbers x, y, z, each different from 1, and satisfying xyz = 1.

(b) Prove that equality holds above for infinitely many triples of rational numbers x, y, z, each
different from 1, and satisfying xyz = 1.

Problem 3. Prove that there exist infinitely many positive integers n such that n2 +1 has a prime
divisor which is greater than 2n +

√
2n.

Language: English Time: 4 hours and 30 minutes
Each problem is worth 7 points

Language: English Day: 1

49th INTERNATIONAL MATHEMATICAL OLYMPIAD
MADRID (SPAIN), JULY 10-22, 2008
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Thursday, July 17, 2008

Problem 4. Find all functions f : (0,∞) → (0,∞) (so, f is a function from the positive real
numbers to the positive real numbers) such that(

f(w)
)2

+
(
f(x)

)2

f(y2) + f(z2)
=

w2 + x2

y2 + z2

for all positive real numbers w, x, y, z, satisfying wx = yz.

Problem 5. Let n and k be positive integers with k ≥ n and k−n an even number. Let 2n lamps
labelled 1, 2, . . . , 2n be given, each of which can be either on or off. Initially all the lamps are off.
We consider sequences of steps : at each step one of the lamps is switched (from on to off or from off
to on).

Let N be the number of such sequences consisting of k steps and resulting in the state where
lamps 1 through n are all on, and lamps n + 1 through 2n are all off.

Let M be the number of such sequences consisting of k steps, resulting in the state where lamps
1 through n are all on, and lamps n + 1 through 2n are all off, but where none of the lamps n + 1
through 2n is ever switched on.

Determine the ratio N/M .

Problem 6. Let ABCD be a convex quadrilateral with |BA| 6= |BC|. Denote the incircles of
triangles ABC and ADC by ω1 and ω2 respectively. Suppose that there exists a circle ω tangent to
the ray BA beyond A and to the ray BC beyond C, which is also tangent to the lines AD and CD.
Prove that the common external tangents of ω1 and ω2 intersect on ω.

Language: English Time: 4 hours and 30 minutes
Each problem is worth 7 points

Language: English Day: 2

49th INTERNATIONAL MATHEMATICAL OLYMPIAD
MADRID (SPAIN), JULY 10-22, 2008
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Wednesday, July 15, 2009

Problem 1. Let n be a positive integer and let a1, . . . , ak (k ≥ 2) be distinct integers in the set
{1, . . . , n} such that n divides ai(ai+1−1) for i = 1, . . . , k−1. Prove that n does not divide ak(a1−1).

Problem 2. Let ABC be a triangle with circumcentre O. The points P and Q are interior points
of the sides CA and AB, respectively. Let K, L and M be the midpoints of the segments BP , CQ
and PQ, respectively, and let Γ be the circle passing through K, L and M . Suppose that the line
PQ is tangent to the circle Γ. Prove that OP = OQ.

Problem 3. Suppose that s1, s2, s3, . . . is a strictly increasing sequence of positive integers such
that the subsequences

ss1 , ss2 , ss3 , . . . and ss1+1, ss2+1, ss3+1, . . .

are both arithmetic progressions. Prove that the sequence s1, s2, s3, . . . is itself an arithmetic pro-
gression.

Language: English Time: 4 hours and 30 minutes
Each problem is worth 7 points

Language: English

Day: 1
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Thursday, July 16, 2009

Problem 4. Let ABC be a triangle with AB = AC. The angle bisectors of 6 CAB and 6 ABC
meet the sides BC and CA at D and E, respectively. Let K be the incentre of triangle ADC.
Suppose that 6 BEK = 45◦. Find all possible values of 6 CAB.

Problem 5. Determine all functions f from the set of positive integers to the set of positive integers
such that, for all positive integers a and b, there exists a non-degenerate triangle with sides of lengths

a, f(b) and f(b + f(a) − 1).

(A triangle is non-degenerate if its vertices are not collinear.)

Problem 6. Let a1, a2, . . . , an be distinct positive integers and let M be a set of n − 1 positive
integers not containing s = a1 + a2 + · · ·+ an. A grasshopper is to jump along the real axis, starting
at the point 0 and making n jumps to the right with lengths a1, a2, . . . , an in some order. Prove that
the order can be chosen in such a way that the grasshopper never lands on any point in M .

Language: English Time: 4 hours and 30 minutes
Each problem is worth 7 points

Language: English

Day: 2
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Solution (1970-2003 and 2006) 

  
IMO 1970 

A1 

We need an expression for r/q. There are two expressions, one in terms of 

angles and the other in terms of sides. The latter is a poor choice, because it is 

both harder to derive and less useful. So we derive the angle expression.  

Let I be the center of the in-circle for ABC and X the center of the external 

circle for ABC. I is the intersection of the two angle bisectors from A and B, so 

c = r (cot A/2 + cot B/2). The X lies on the bisector of the external angle, so 

angle XAB is 90o - A/2. Similarly, angle XBA is 90o - B/2, so c = q (tan A/2 + 

tan B/2). Hence r/q = (tan A/2 + tan B/2)/(cot A/2 + cot B/2) = tan A/2 tan B/2.  

Applying this to the other two triangles, we get r1/q1 = tan A/2 tan CMA/2, r2/q2 

= tan B/2 tan CMB/2. But CMB/2 = 90o - CMA/2, so tan CMB/2 = 1/tan CMA/2. 

Hence result.  

B2 

The first step is to show that angles ADB and ADC are also 90o. Let H be the 

intersection of the altitudes of ABC and let CH meet AB at X. Planes CED and 

ABC are perpendicular and AB is perpendicular to the line of intersection CE. 

Hence AB is perpendicular to the plane CDE and hence to ED. So BD2 = DE2 + 

BE2. Also CB2 = CE2 + BE2. Subtracting: CB2 - BD2 = CE2 - DE2. But CB2 - BD2 

= CD2, so CE2 = CD2 + DE2, so angle CDE = 90o. But angle CDB = 90o, so CD is 

perpendicular to the plane DAB, and hence angle CDA = 90o. Similarly, angle 

ADB = 90o.  

Hence AB2 + BC2 + CA2 = 2(DA2 + DB2 + DC2). But now we are done, because 

Cauchy's inequality gives (AB + BC + CA)2 ≤ 3(AB2 + BC2 + CA2).  

We have equality iff we have equality in Cauchy's inequality, which means AB = 

BC = CA.  

B3 

Improved and corrected by Gerhard Wöginger, Technical University Graz  

At most 3 of the triangles formed by 4 points can be acute. It follows that at 

most 7 out of the 10 triangles formed by any 5 points can be acute. For given 

10 points, the maximum no. of acute triangles is: the no. of subsets of 4 points 

x 3/the no. of subsets of 4 points containing 3 given points. The total no. of 
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triangles is the same expression with the first 3 replaced by 4. Hence at most 

3/4 of the 10, or 7.5, can be acute, and hence at most 7 can be acute.  

The same argument now extends the result to 100 points. The maximum number 

of acute triangles formed by 100 points is: the no. of subsets of 5 points x 

7/the no. of subsets of 5 points containing 3 given points. The total no. of 

triangles is the same expression with 7 replaced by 10. Hence at most 7/10 of 

the triangles are acute.  

 

IMO 1973 
A1 

We proceed by induction on n. It is clearly true for n = 1. Assume it is true for 

2n-1. Given OPi for 2n+1, reorder them so that all OPi lie between OP2n and 

OP2n+1. Then u = OP2n + OP2n+1 lies along the angle bisector of angle P2nOP2n+1 

and hence makes an angle less than 90o with v = OP1 + OP2 + ... + OP2n-1 

(which must lie between OP1 and OP2n-1 and hence between OP2n and OP2n+1. 

By induction |v| ≥ 1. But |u + v| ≥ |v| (use the cosine formula). Hence the 

result is true for 2n+1.  

It is clearly best possible: take OP1 = ... = OPn = -OPn+1 = ... = -OP2n, and 

OP2n+1 in an arbitrary direction.  

A2 

To warm up, we may notice that a regular hexagon is a planar set satisfying the 

condition.  

Take two regular hexagons with a common long diagonal and their planes 

perpendicular. Now if we take A, B in the same hexagon, then we can find C, D 

in the same hexagon. If we take A in one and B in the other, then we may take 

C at the opposite end of a long diagonal from A, and D at the opposite end of a 

long diagonal from B.  

A3 

Put y = x + 1/x and the equation becomes y2 + ay + b - 2 = 0, which has 

solutions y = -a/2 ±√(a2 + 8 - 2b)/2. We require |y| ≥ 2 for the original equation 

to have a real root and hence we need |a| + √(a2 + 8 - 4b) ≥ 4. Squaring gives 

2|a| - b ≥ 2. Hence a2 + b2 ≥ a2 + (2 - 2|a|)2 = 5a2 - 8|a| + 4 = 5(|a| - 4/5)2 

+ 4/5. So the least possible value of a2 + b2 is 4/5, achieved when a = 4/5, b = 

-2/5. In this case, the original equation is x4 + 4/5 x3 - 2/5 x2 + 4/5 x + 1 = (x + 

1)2(x2 - 6/5 x + 1).  
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B1 

In particular he must sweep the other two vertices. Let us take the triangle to be 

ABC, with side 1 and assume the soldier starts at A. So the path must intersect 

the circles radius √3/4 centered on the other two vertices. Let us look for the 

shortest path of this type. Suppose it intersects the circle center B at X and the 

circle center C at Y, and goes first to X and then to Y. Clearly the path from A to 

X must be a straight line and the path from X to Y must be a straight line. 

Moreover the shortest path from X to the circle center C follows the line XC and 

has length AX + XC - √3/4. So we are looking for the point X which minimises 

AX + XC.  

Consider the point P where the altitude intersects the circle. By the usual 

reflection argument the distance AP + PC is shorter than the distance AP' + P'C 

for any other point P' on the line perpendicular to the altitude through P. 

Moreover for any point X on the circle, take AX to cut the line at P'. Then AX + 

XC > AP' + P'C > AP + PC.  

It remains to check that the three circles center A, X, Y cover the triangle. In 

fact the circle center X covers the whole triangle except for a small portion near 

A and a small portion near C, which are covered by the triangles center A and 

Y.  

B2  

f(x) = ax + b has fixed point b/(1-a). If a = 1, then b must be 0, and any point 

is a fixed point. So suppose f(x) = ax + b and g(x) = ax + b' are in G. Then h 

the inverse of f is given by h(x) = x/a - b/a, and hg(x) = x + b'/a - b/a. This is 

in G, so we must have b' = b.  

Suppose f(x) = ax + b, and g(x) = cx + d are in G. Then fg(x) = acx + (ad + b), 

and gf(x) = acx + (bc + d). We must have ad + b = bc + d and hence b/(1-a) = 

c/(1-d), in other words f and g have the same fixed point.  

B3  

We notice that the constraints are linear, in the sense that if bi is a solution for 

ai, q, and bi' is a solution for ai', q, then for any k, k' > 0 a solution for kai + 

k'ai', q is kbi + k'bi'. Also a "near" solution for ah = 1, other ai = 0 is b1 = qh-1, b2 

= qh-2, ... , bh-1 = q, bh = 1, bh+1 = q, ... , bn = qn-h. "Near" because the 

inequalities in (a) and (b) are not strict.  

However, we might reasonably hope that the inequalities would become strict in 

the linear combination, and indeed that is true. Define br = qr-1a1 + qr-2a2 + ... + 

qar-1 + ar + qar+1 + ... + qn-ran. Then we may easily verify that (a) - (c) hold.  
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IMO 1974 
A1  

The player with 9 counters.  

The total of the scores, 39, must equal the number of rounds times the total of 

the cards. But 39 has no factors except 1, 3, 13 and 39, the total of the cards 

must be at least 1 + 2 + 3 = 6, and the number of rounds is at least 2. Hence 

there were 3 rounds and the cards total 13.  

The highest score was 20, so the highest card is at least 7. The score of 10 

included at least one highest card, so the highest card is at most 8. The lowest 

card is at most 2, because if it was higher then the highest card would be at 

most 13 - 3 - 4 = 6, whereas we know it is at least 7. Thus the possibilities for 

the cards are: 2, 3, 8; 2, 4, 7; 1, 4, 8; 1, 5, 7. But the only one of these that 

allows a score of 20 is 1, 4, 8. Thus the scores were made up: 8 + 8 + 4 = 20, 8 

+ 1 + 1 = 10, 4 + 4 + 1 = 9. The last round must have been 4 to the player with 

20, 8 to the player with 10 and 1 to the player with 9. Hence on each of the 

other two rounds the cards must have been 8 to the player with 20, 1 to the 

player with 10 and 4 to the player with 9.  

A2  

Extend CD to meet the circumcircle of ABC at E. Then CD·DE = AD·DB, so CD 

is the geometric mean of AD and DB iff CD = DE. So we can find such a point 

iff the distance of C from AB is less than the distance of AB from the furthest 

point of the arc AB on the opposite side of AB to C. The furthest point F is 

evidently the midpoint of the arc AB. F lies on the angle bisector of C. So �FAB 

= �FAC = �C/2. Hence distance of F from AB is c/2 tan C/2 (as usual we set c 

= AB, b = CA, a = BC). The distance of C from AB is a sin B. So a necessary 

and sufficient condition is c/2 tan C/2 ≥ a sin B. But by the sine rule, a = c sin 

A/sin C, so the condition becomes (sin C/2 sin C)/(2 cos C/2) ≥ sin A sin B. 

But sin C = 2 sin C/2 cos C/2, so we obtain the condition quoted in the 

question.  

A3  

Let k = √8. Then (1 + k)2n+1 = a + bk, where b is the sum given in the question. 

Similarly, (1 - k)2n+1 = a - bk. This looks like a dead end, because eliminating a 

gives an unhelpful expression for b. The trick is to multiply the two expressions 

to get 72n+1 = 8b2 - a2. This still looks unhelpful, but happens to work, because 

we soon find that 72n+1 ≠ ±2 (mod 5). So if b was a multiple of 5 then we would 

have a square congruent to ±2 (mod 5) which is impossible.  
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B1  

The requirement that the number of black and white squares be equal is 

equivalent to requiring that the each rectangle has an even number of squares. 

2 + 4 + 6 + 8 + 10 + 12 + 14 + 16 = 72 > 64, so p < 8. There are 5 possible 

divisions of 64 into 7 unequal even numbers: 2 + 4 + 6 + 8 + 10 + 12 + 22; 2 + 

4 + 6 + 8 + 10 + 16 + 18; 2 + 4 + 6 + 8 + 12 + 14 + 18; 2 + 4 + 6 + 10 + 12 + 

14 + 16. The first is ruled out because a rectangle with 22 squares would have 

more than 8 squares on its longest side. The others are all possible.  

 

2 2 2 2 2 2 2 4   2 2 2 2 2 2 2 2 

 

2 2 2 2 2 2 2 4   2 2 2 2 2 2 2 2 

 

1 1 1 1 1 5 5 4   1 1 1 1 1 1 5 5 

 

1 1 1 1 1 5 5 4   1 1 1 1 1 1 5 5 

 

1 1 1 1 1 5 5 4   1 1 1 1 1 1 5 5 

 

1 1 1 1 1 6 6 4   3 3 3 3 3 7 6 6 

 

3 3 3 3 3 6 6 4   3 3 3 3 3 7 6 6 

 

3 3 3 3 3 7 7 4   4 4 4 4 4 4 4 4 

 

 

 

2 2 2 2 2 2 2 7   1 1 1 1 1 1 1 1 

 

2 2 2 2 2 2 2 7   1 1 1 1 1 1 1 1 

 

1 1 1 1 1 1 4 4   2 2 2 2 2 2 2 7 

 

1 1 1 1 1 1 4 4   2 2 2 2 2 2 2 7 

 

1 1 1 1 1 1 4 4   3 3 3 3 3 3 6 6 

 

3 3 3 3 3 3 4 4   3 3 3 3 3 3 6 6 

 

3 3 3 3 3 3 6 6   4 4 4 4 4 5 5 5 

 

5 5 5 5 5 5 6 6   4 4 4 4 4 5 5 5 
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B2  

We show first that the sum must lie between 1 and 2. If we replace each 

denominator by a+b+c+d then we reduce each term and get 1. Hence the sum 

is more than 1. Suppose a is the largest of the four reals. Then the first term is 

less than 1. The second and fourth terms have denominators greater than 

b+c+d, so the terms are increased if we replace the denominators by b+c+d. 

But then the last three terms sum to 1. Thus the sum of the last three terms is 

less than 1. Hence the sum is less than 2.  

If we set a = c = 1 and make b and d small, then the first and third terms can be 

made arbitarily close to 1 and the other two terms arbitarily close to 0, so we 

can make the sum arbitarily close to 2. If we set a = 1, c = d and make b and 

c/b arbitarily small, then the first term is arbitarily close to 1 and the last three 

terms are all arbitarily small, so we can make the sum arbitarily close to 1. 

Hence, by continuity, we can achieve any value in the open interval (1,2).  

 

B3 

Suppose that A(x) and B(x) are two polynomials with integer coefficients which 

are identical except for their constant terms, which differ by 2. Suppose A(r) = 

0, and B(s) =0 with r and s integers. Then subtracting we get 2 plus a sum of 

terms a(ri - si). Each of these terms is divisible by (r - s), so 2 must be divisible 

by (r - s). Hence r and s differ by 0, 1 or 2.  

Now let r be the smallest root of P(x) = 1 and P(x) = -1. The polynomial with r 

as a root can have at most d distinct roots and hence at most d distinct integer 

roots. If s is a root of the other equation then s must differ from r by 0, 1, or 2. 

But s ≥ r, so s = r, r+1 or r+2. Hence the other equation adds at most 2 distinct 

integer roots.  

IMO 1975 
A1  

If x ≥ x' and y ≥ y', then (x - y)2 + (x' - y')2 ≤ (x - y')2 + (x' - y)2. Hence if i < j, 

but zi ≤ zj, then swapping zi and zj reduces the sum of the squares. But we can 

return the order of the zi to yi by a sequence of swaps of this type: first swap 1 

to the 1st place, then 2 to the 2nd place and so on.  

A2  

We must be able to find a set S of infinitely many an in some residue class mod 

ai. Take aj to be a member of S. Then for any an in S satisfying an > aj, we have 

an = aj + a multiple of ai.  
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A3  

Trigonometry provides a routine solution. Let BC = a, CA = b, AB = c. Then, by 

the sine rule applied to AQC, AQ = b/(2 sin 105o) = b/(2 cos 15o). Similarly, PB 

= a/(2 cos 15). Also AR = RB = c/(2 cos 15o). So by the cosine rule RP2 = (a2 + 

c2 - 2ac cos(B+60o))/(4 cos215o), and RQ2 = (b2 + c2 - 2bc cos(A+60o))/(4 

cos215o). So RP = RQ is equivalent to: a2 - 2ac cos(60o+B) = b2 - 2bc 

cos(60o+A) and hence to a2 - ac cos B + √3 ac sin B = b2 - bc cos A + √3 bc 

sin A. By the sine rule, the sine terms cancel. Also b - b cos A = a cos C, and a 

- c cos B = b cos C, so the last equality is true and hence RP = RQ. We get an 

exactly similar expression for PQ2 and show that it equals 2 RP2 in the same 

way.  

A more elegant solution is to construct S on the outside of AB so that ABS is 

equilateral. Then we find that CAS and QAR are similar and that CBS and PBR 

are similar. So QR/CS = PR/CS. The ratio of the sides is the same in each case 

(CA/QA = CB/PB since CQA and CPB are similar), so QR = PR. Also there is a 

45o rotation between QAR and CAS and another 45o rotation between CBS and 

PBR, hence QR and PR are at 90o.  

B1  

Let X = 44444444.Then X has less than 4.4444 = 17776 digits, so A is at most 

9.17776 = 159984. Hence B is at most 6.9 = 54. But all these numbers are 

congruent mod 9. 4444 = -2 (mod 9), so X = (-2)4444 (mod 9). But (-2)3 = 1 

(mod 9), and 4444 = 1 (mod 3), so X = -2 = 7 (mod 9). But any number less 

than 55 and congruent to 7 has digit sum 7 (possibilities are 7, 16, 25, 34, 43, 

52). Hence the answer is 7.  

B2  

Let x be the angle cos-14/5, so that cos x = 4/5, sin x = 3/5. Take points on the 

unit circle at angles 2nx for n integral. Then the distance between the points at 

angles 2nx and 2mx is 2 sin(n - m)x. The usual formula, giving sin(n - m)x in 

terms of sin x and cos x, shows that sin(n - m)x is rational. So it only remains 

to show that this process generates arbitarily many distinct points, in other 

words that x is not a rational multiple of π.  

This is quite hard. There is an elegant argument in sections 5 and 8 of Hadwiger 

et al, Combinatorial geometry in the Plane. But we can avoid it by observing that 

there are only finitely many numbers with are nth roots of unity for n ≤ 2 x 1975, 

whereas there are infinitely many Pythagorean triples, so we simply pick a triple 

which is not such a root of unity.  
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B3  

 (1) means that P is homogeneous of degree n for some n. Experimenting with 

low n, shows that the only solutions for n = 1, 2, 3 are (x - 2y), (x + y)(x - 2y), 

(x + y)2(x - 2y). It then obvious by inspection that (x + y)n(x - 2y) is a solution 

for any n. Taking x = y = z in (2) shows that P(2x,x) = 0, so (x - 2y) is always a 

factor. Taking x = y = 1, z = -2 gives P(1,-1) (2n - 2) = 0, so (x + y) is a factor 

for n > 1. All this suggests (but does not prove) that the general solution is (x + 

y)n(x - 2y).  

Take y = 1 - x, z = 0 in (2) and we get: P(x, 1-x) = -1 - P(1-x, x). In particular, 

P(0,1) = -2. Now take z = 1 - x - y and we get: P(1-x, x) + P(1-y, y) + P(x+y, 

1-x-y) = 0 and hence f(x+y) = f(x) + f(y), where f(x) = P(1-x, x) - 1. By 

induction we conclude that, for any integer m and real x, f(mx) = mf(x). Hence 

f(1/s) = 1/s f(1) and f(r/s) = r/s f(1) for any integers r, s. But P(0,1) = -2, so 

f(1) = -3. So f(x) = -3x for all rational x. But f is continuous, so f(x) = -3x for all 

x. So set x = b/(a+b), where a and b are arbitrary reals (with a+b non-zero). 

Then P(a,b) = (a+b)nP(1-x, x) = (a+b)n(-3b/(a+b) + 1) = (a+b)n-1(a-2b), as 

claimed. [For a+b = 0, we appeal to continuity, or use the already derived fact 

that for n > 1, P(a,b) = 0.]  

IMO 1976 
A1  

At first sight, the length of the other diagonal appears unlikely to be significantly 

constrained. However, a little experimentation shows that it is hard to get such a 

low value as 16. This suggests that 16 may be the smallest possible value.  

If the diagonal which is part of the 16 has length x, then the area is the sum of 

the areas of two triangles base x, which is xy/2, where y is the sum of the 

altitudes of the two triangles. y must be at most (16 - x), with equality only if 

the two triangles are right-angled. But x(16 - x)/2 = (64 - (x - 8)2)/2 ≤ 32 with 

equality only iff x = 8. Thus the only way we can achieve the values given is with 

one diagonal length 8 and two sides perpendicular to this diagonal with lengths 

totalling 8. But in this case the other diagonal has length 8√2.  

A2  

We show that the graph of Pn can be divided into 2n lines each joining the top 

and bottom edges of the square side 4 centered on the origin (vertices (2,2), (-

2,2), (-2,-2), (-2,2) ). We are then home because the upward sloping diagonal 

of the square, which represents the graph of y = x, must cut each of these lines 

and hence give 2n distinct real roots of Pn(x) = x in the range [-2,2]. But Pn is a 

polynomial of degree 2n, so it has exactly 2n roots. Hence all its roots are real 

and distinct.  
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We prove the result about the graph by induction. It is true for n = 1: the first 

line is the graph from x = -2 to 0, and the second line is the graph from 0 to 2. 

So suppose it is true for n. Then P1 turns each of the 2n lines for Pn into two 

lines for Pn+1, so the result is true for n+1.  

Alternative solution from Arthur Engel, Problem-Solving Strategies, Springer 
1998 [Problem books in mathematics series], ISBN 0387982191. A rather good 
training book.  

Put x = 2 cos t (so we are restricting attention to -2 ≤ x ≤ 2). Then we find Pn(x) 

= 2 cos 2nt, so the equation Pn(x) = x becomes cos 2nt = cos t. By inspection, 

has the 2n solutions t = 2kπ/(2n - 1) and t = 2kπ/(2n + 1), giving 2n distinct 

solutions in x.    

A3 

Answer: 2 x 3 x 5 or 2 x 5 x 6.  

This is somewhat messy. The basic idea is that the sides cannot be too long, 

because then the ratio becomes too big. Let k denote the (real) cube root of 2. 

Given any integer n, let n' denote the least integer such that n'k <= n. Let the 

sides of the box be a ≤ b ≤ c. So we require 5a'b'c' = abc (*).  

It is useful to derive n' for small n: 1' = 0, 2' = 1, 3' = 2, 4' = 3, 5' = 3, 6' = 4, 7' 

= 5, 8' = 6, 9' = 7, 10' = 7.  

Clearly n'k ≥ n-2. But 63 > 0.4 83, and hence (n'k)3 ≥ (n - 2)3 > 0.4 n3 for all n ≥ 
8. We can check directly that (n'k)3 > 0.4 n3 for n = 3, 4, 5, 6, 7. So we must 

have a = 2 (we cannot have a = 1, because 1' = 0).  

From (*) we require b or c to be divisible by 5. Suppose we take it to be 5. Then 

since 5' = 3, the third side n must satisfy: n' = 2/3 n. We can easily check that 

2k/3 < 6/7 and hence (2/3 nk + 1 ) < n for n ≥ 7, so n' > 2/3 n for n ≥ 7. This 

just leaves the values n = 3 and n = 6 to check (since n' = 2/3 n is integral so n 

must be a multiple of 3). Referring to the values above, both these work. So this 

gives us two possible boxes: 2 x 3 x 5 and 2 x 5 x 6.  

The only remaining possibility is that the multiple of 5 is at least 10. But then it 

is easy to check that if it is m then m'/m ≥ 7/10. It follows from (*) that the third 

side r must satisfy r'/r <= 4/7. But using the limit above and referring to the 

small values above, this implies that r must be 2. So a = b = 2. But now c must 

satisfy c' = 4/5 c. However, that is impossible because 4/5 k > 1.  

 

 

 

 

96



B1  

Answer: 2·3658.  

There cannot be any integers larger than 4 in the maximal product, because for 

n > 4, we can replace n by 3 and n - 3 to get a larger product. There cannot be 

any 1s, because there must be an integer r > 1 (otherwise the product would be 

1) and r + 1 > 1.r. We can also replace any 4s by two 2s leaving the product 

unchanged. Finally, there cannot be more than two 2s, because we can replace 

three 2s by two 3s to get a larger product. Thus the product must consist of 3s, 

and either zero, one or two 2s. The number of 2s is determined by the 

remainder on dividing the number 1976 by 3.  

1976 = 3·658 + 2, so there must be just one 2, giving the product 2·3658.    

B2  

We use a counting argument. If the modulus of each xi is at most n, then each 

of the linear combinations has a value between -2n2 and 2n2, so there are at 

most (4n2 + 1) possible values for each linear combination and at most (2n2 + 

1)n possible sets of values. But there are 2n+1 values for each xi with modulus 

at most n, and hence (2n+1)2n = (4n2+4n+1)n sets of values. So two distinct 

sets must give the same set of values for the linear combinations. But now if 

these sets are xi and xi', then the values xi-xi' give zero for each linear 

combination, and have modulus at most 2n. Moreover they are not all zero, 

since the two sets of values were distinct.  

B3  

Experience with recurrence relations suggests that the solution is probably the 

value given for [un] plus its inverse. It is straightforward to verify this guess by 

induction.  

Squaring un-1 gives the sum of positive power of 2, its inverse and 2. So un-1 - 

2 = the sum of a positive power of 2 and its inverse. Multiplying this by un gives 

a positive power of 2 + its inverse + 2 + 1/2, and we can check that the power 

of 2 is correct for un+1.  

IMO 1977 
A1  

The most straightforward approach is to use coordinates. Take A, B, C, D to be 

(1,1), (-1,1), (-1,-1), (1,-1). Then K, L, M, N are (0, -2k), (2k, 0), (0, 2k), (-2k, 

0), where k = (√3 - 1)/2. The midpoints of KL, LM, MN, NK are (k, -k), (k, k), (-

k, k), (-k, -k). These are all a distance k√2 from the origin, at angles 315, 45, 

135, 225 respectively. The midpoints of AK, BK, BL, CL, CM, DM, DN, AN are 

(h, j), (-h, j), (-j, h), (-j, -h), (-h, -j), (h, -j), (j, -h), (j, h), where h = 1/2, j = 
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(1 - 1/2 √3). These are also at a distance k√2 from the origin, at angles 15, 

165, 105, 255, 195, 345, 285, 75 respectively. For this we need to consider the 

right-angled triangle sides k, h, j. The angle x between h and k has sin x = j/k 

and cos x = h/k. So sin 2x = 2 sin x cos x = 2hj/k2 = 1/2. Hence x = 15.  

So the 12 points are all at the same distance from the origin and at angles 15 + 

30n, for n = 0, 1, 2, ... , 11. Hence they form a regular dodecagon.  

A2  

Answer: 16.  

x1 + ... + x7 < 0, x8 + ... + x14 < 0, so x1 + ... + x14 < 0. But x4 + ... + x14 > 0, so 

x1 + x2 + x3 < 0. Also x5 + ... + x11 < 0 and x1 + ... + x11 > 0, so x4 > 0. If there 

are 17 or more elements then the same argument shows that x5, x6, x7 > 0. But 

x1 + ... + x7 < 0, and x5 + ... + x11 < 0, whereas x1 + ... + x11 > 0, so x5 + x6 + x7 

< 0. Contradiction.  

If we assume that there is a solution for n = 16 and that the sum of 7 

consecutive terms is -1 and that the sum of 11 consecutive terms is 1, then we 

can easily solve the equations to get: 5, 5, -13, 5, 5, 5, -13, 5, 5, -13, 5, 5, 5, 

-13, 5, 5 and we can check that this works for 16.  

A3  

Take a, b, c, d = -1 (mod n). The idea is to take abcd which factorizes as 

ab.cd or ac.bd. The hope is that ab, cd, ac, bd will not factorize in Vn. But a 

little care is needed, since this is not necessarily true.  

Try taking a = b = n - 1, c = d = 2n -1. a2 must be indecomposable because it 

is less than the square of the smallest element in Vn. If ac = 2n2 - 3n + 1 is 

decomposable, then we have kk'n + k + k' = 2n - 3 for some k, k' >= 1. But 

neither of k or k' can be 2 or more, because then the lhs is too big, and k = k' = 

1 does not work unless n = 5. Similarly, if c2 is decomposable, then we have 

kk'n + k + k' = 4n - 4. k = k' = 1 only works for n = 2, but we are told n > 2. k = 

1, k' = 2 does not work (it would require n = 7/2). k = 1, k' = 3 only works for n 

= 8. Other possibilities make the lhs too big.  

So if n is not 5 or 8, then we can take the number to be (n - 1)2(2n - 1)2, which 

factors as (n - 1)2 x (2n - 1)2 or as (n - 1)(2n - 1) x (n - 1)(2n - 1). This does 

not work for 5 or 8: 16·81 = 36·36, but 36 decomposes as 6·6; 49·225 = 

105·105, but 225 decomposes as 9·25.  

For n = 5, we can use 3136 = 16·196 = 56·56. For n = 8, we can use 25921 = 

49·529 = 161·161.  
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B1  

Take y so that cos y = a/√(a2 + b2), sin y = b/√(a2 + b2), and z so that cos 2z = 

A/√(A2 + B2), sin 2z = B/√(A2 + B2). Then f(x) = 1 - c cos(x - y) - C cos2(x - 

z), where c = √(a2 + b2), C = √(A2 + B2).  

f(z) + f(π + z) ≥ 0 gives C ≤ 1. f(y + π/4) + f(y - π/4) ≥ 0 gives c ≤ √2.  

B2  

a2 + b2 >= (a + b)2/2, so q ≥ (a + b)/2. Hence r < 2q. The largest square less 

than 1977 is 1936 = 442. 1977 = 442 + 41. The next largest gives 1977 = 432 + 

128. But 128 > 2.43. So we must have q = 44, r = 41. Hence a2 + b2 = 44(a + b) 

+ 41, so (a - 22)2 + (b - 22)2 = 1009. By trial, we find that the only squares with 

sum 1009 are 282 and 152. This gives two solutions 50, 37 or 50, 7.  

B3  

The first step is to show that f(1) < f(2) < f(3) < ... . We do this by induction on 

n. We take Sn to be the statement that f(n) is the unique smallest element of { 

f(n), f(n+1), f(n+2), ... }.  

For m > 1, f(m) > f(s) where s = f(m-1), so f(m) is not the smallest member of 

the set {f(1), f(2), f(3), ... }. But the set is bounded below by zero, so it must 

have a smallest member. Hence the unique smallest member is f(1). So S1 is 

true.  

Suppose Sn is true. Take m > n+1. Then m-1 > n, so by Sn, f(m-1) > f(n). But 

Sn also tells us that f(n) > f(n-1) > ... > f(1), so f(n) ≥ n - 1 + f(1) ≥ n. Hence 

f(m-1) ≥ n+1. So f(m-1) belongs to { n+1, n+2, n+3, .. }. But we are given that 

f(m) > f(f(m-1)), so f(m) is not the smallest element of { f(n+1), f(n+2), f(n+3), 

... }. But there must be a smallest element, so f(n+1) must be the unique 

smallest member, which establishes Sn+1. So, Sn is true for all n.  

So n ≤ m implies f(n) <= f(m). Suppose for some m, f(m) ≥ m+1, then f(f(m)) ≥ 
f(m+1). Contradiction. Hence f(m) ≤ m for all m. But since f(1) ≥1 and f(m) > 

f(m-1) > ... > f(1), we also have f(m) ≥ m. Hence f(m) = m for all m.  

IMO 1978 
A1  

We require 1978m(1978n-m - 1) to be a multiple of 1000=8·125. So we must 

have 8 divides 1978m, and hence m ≥ 3, and 125 divides 1978n-m - 1.  

By Euler's theorem, 1978φ(125) = 1 (mod 125). φ(125) = 125 - 25 = 100, so 

1978100 = 1 (mod 125). Hence the smallest r such that 1978r = 1 (mod 125) 

must be a divisor of 100 (because if it was not, then the remainder on dividing it 
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into 100 would give a smaller r). That leaves 9 possibilities to check: 1, 2, 4, 5, 

10, 20, 25, 50, 100. To reduce the work we quickly find that the smallest s such 

that 1978s = 1 (mod 5) is 4 and hence r must be a multiple of 4. That leaves 4, 

20, 100 to examine.  

We find 9782 = 109 (mod 125), and hence 9784 = 6 (mod 125). Hence 97820 = 

65 = 36·91 = 26 (mod 125). So the smallest r is 100 and hence the solution to 

the problem is 3, 103.  

A2  

Suppose ABCD is a rectangle and X any point inside, then XA2 + XC2 = XB2 + 

XD2. This is most easily proved using coordinates. Take the origin O as the 

center of the rectangle and take OA to be the vector a, and OB to be b. Since it 

is a rectangle, |a| = |b|. Then OC is -a and OD is -b. Let OX be c. Then XA2 + 

XC2 = (a - c)2 + (a + c)2 = 2a2 + 2c2 = 2b2 + 2c2 = XB2 + XD2.  

Let us fix U. Then the plane k perpendicular to PU through P cuts the sphere in 

a circle center C. V and W must lie on this circle. Take R so that PVRW is a 

rectangle. By the result just proved CR2 = 2CV2 - CP2. OC is also perpendicular 

to the plane k. Extend it to X, so that CX = PU. Then extend XU to Y so that YR 

is perpendicular to k. Now OY2 = OX2 + XY2 = OX2 + CR2 = OX2 + 2CV2 - CP2 = 

OU2 - UX2 + 2CV2 - CP2 = OU2 - CP2 + 2(OV2 - OC2) - CP2 = 3OU2 - 2OP2. 

Thus the locus of Y is a sphere.  

A3  

Let F = {f(1), f(2), f(3), ... }, G = {g(1), g(2), g(3), ... }, Nn = {1, 2, 3, ... , n}. 

f(1) ≥ 1, so f(f(1)) ≥ 1 and hence g(1) ≥ 2. So 1 is not in G, and hence must be 

in F. It must be the smallest element of F and so f(1) = 1. Hence g(1) = 2. We 

can never have two successive integers n and n+1 in G, because if g(m) = n+1, 

then f(something) = n and so n is in F and G. Contradiction. In particular, 3 

must be in F, and so f(2) = 3.  

Suppose f(n) = k. Then g(n) = f(k) + 1. So |Nf(k)+1 ∩ G| = n. But |Nf(k)+1 ∩ F| = 

k, so n + k = f(k) + 1, or f(k) = n + k - 1. Hence g(n) = n + k. So n + k + 1 must 

be in F and hence f(k+1) = n + k + 1. This so given the value of f for n we can 

find it for k and k+1.  

Using k+1 each time, we get, successively, f(2) = 3, f(4) = 6, f(7) = 11, f(12) = 

19, f(20) = 32, f(33) = 53, f(54) = 87, f(88) = 142, f(143) = 231, f(232) = 375, 

which is not much help. Trying again with k, we get: f(3) = 4, f(4) = 6, f(6) = 9, 

f(9) = 14, f(14) = 22, f(22) = 35, f(35) = 56, f(56) = 90, f(90) = 145, f(145) = 

234. Still not right, but we can try backing up slightly and using k+1: f(146) = 

236. Still not right, we need to back up further: f(91) = 147, f(148) = 239, f(240) 

= 388.  
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B1  

It is not a good idea to get bogged down in complicated formulae for the 

various radii. The solution is actually simple.  

By symmetry the midpoint, M, is already on the angle bisector of A, so it is 

sufficient to show it is on the angle bisector of B. Let the angle bisector of A 

meet the circumcircle again at R. AP is a tangent to the circle touching AB at P, 

so �PRQ = �APQ = �ABC. Now the quadrilateral PBRM is cyclic because the 

angles PBR, PMR are both 90o. Hence �PBM = �PRM = (�PRQ)/2, so BM does 

indeed bisect angle B as claimed.  

B2  

We use the general rearrangement result: given b1 ≥ b2 ≥ ... ≥ bn, and c1 ≤ c2 ≤ 
... ≤ cn, if {ai} is a permutation of {ci}, then ∑ aibi ≥ ∑ cibi. To prove it, suppose 

that i < j, but ai > aj. Then interchanging ai and aj does not increase the sum, 

because (ai - aj)(bi - bj) ≥ 0, and hence aibi + ajbj ≥ ajbi + aibj. By a series of 

such interchanges we transform {ai} into {ci} (for example, first swap c1 into 

first place, then c2 into second place and so on).  

Hence we do not increase the sum by permuting {ai} so that it is in increasing 

order. But now we have ai > i, so we do not increase the sum by replacing ai by 

i and that gives the sum from 1 to n of 1/k.  

B3  

The trick is to use differences.  

At least 6.329 = 1974, so at least 330 members come from the same country, 

call it C1. Let their numbers be a1 < a2 < ... < a330. Now take the 329 differences 

a2 - a1, a3 - a1, ... , a330 - a1. If any of them are in C1, then we are home, so 

suppose they are all in the other five countries.  

At least 66 must come from the same country, call it C2. Write the 66 as b1 < b2 

< ... < b66. Now form the 65 differences b2 - b1, b3 - b1, ... , b66 - b1. If any of 

them are in C2, then we are home. But each difference equals the difference of 

two of the original ais, so if it is in C1 we are also home.  

So suppose they are all in the other four countries. At least 17 must come from 

the same country, call it C3. Write the 17 as c1 < c2 < ... < c17. Now form the 16 

differences c2 - c1, c3 - c1, ... , c17 - c1. If any of them are in C3, we are home. 

Each difference equals the difference of two bis, so if any of them are in C2 we 

are home. [For example, consider ci - c1. Suppose ci = bn - b1 and c1 = bm - 

b1, then ci - c1 = bn - bm, as claimed.]. Each difference also equals the 

difference of two ais, so if any of them are in C1, we are also home. [For 
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example, consider ci - c1, as before. Suppose bn = aj - a1, bm = ak - a1, then ci 

- c1 = bn - bm = aj - ak, as claimed.]  

So suppose they are all in the other three countries. At least 6 must come from 

the same country, call it C4. We look at the 5 differences and conclude in the 

same way that at least 3 must come from C5. Now the 2 differences must both 

be in C6 and their difference must be in one of the C1, ... , C6 giving us the 

required sum.  

IMO 1979 
A1 

This is difficult.  

The obvious step of combining adjacent terms to give 1/(n(n+1) is unhelpful. 

The trick is to separate out the negative terms:  

    1 - 1/2 + 1/3 - 1/4 + ... - 1/1318 + 1/1319 = 1 + 1/2 + 1/3 + ... + 1/1319 - 

2(1/2 + 1/4 + ... + 1/1318) = 1/660 + 1/661 + ... + 1/1319.  

and to notice that 660 + 1319 = 1979. Combine terms in pairs from the outside:  

    1/660 + 1/1319 = 1979/(660.1319); 1/661 + 1/1318 = 1979/(661.1318) etc.  

There are an even number of terms, so this gives us a sum of terms 1979/m 

with m not divisible by 1979 (since 1979 is prime and so does not divide any 

product of smaller numbers). Hence the sum of the 1/m gives a rational number 

with denominator not divisible by 1979 and we are done.  

A2  

We show first that the Ai are all the same color. If not then, there is a vertex, call 

it A1, with edges A1A2, A1A5 of opposite color. Now consider the five edges A1Bi. 

At least three of them must be the same color. Suppose it is green and that 

A1A2 is also green. Take the three edges to be A1Bi, A1Bj, A1Bk. Then 

considering the triangles A1A2Bi, A1A2Bj, A1A2Bk, the three edges A2Bi, A2Bj, A2Bk 

must all be red. Two of Bi, Bj, Bk must be adjacent, but if the resulting edge is 

red then we have an all red triangle with A2, whilst if it is green we have an all 

green triangle with A1. Contradiction. So the Ai are all the same color. Similarly, 

the Bi are all the same color. It remains to show that they are the same color. 

Suppose otherwise, so that the Ai are green and the Bi are red.  

Now we argue as before that 3 of the 5 edges A1Bi must be the same color. If it 

is red, then as before 2 of the 3 Bi must be adjacent and that gives an all red 

triangle with A1. So 3 of the 5 edges A1Bi must be green. Similarly, 3 of the 5 

edges A2Bi must be green. But there must be a Bi featuring in both sets and it 
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forms an all green triangle with A1 and A2. Contradiction. So the Ai and the Bi 

are all the same color.  

A3  

Let the circles have centers O, O' and let the moving points by X, X. Let P be 

the reflection of A in the perpendicular bisector of OO'. We show that triangles 

POX, X'O'P are congruent. We have OX = OA (pts on circle) = O'P (reflection). 

Also OP = O'A (reflection) = O'X' (pts on circle). Also �AOX = �AO'X' (X and X' 

circle at same rate), and �AOP = �AO'P (reflection), so �POX = �PO'X'. So the 

triangles are congruent. Hence PX = PX'.  

Another approach is to show that XX' passes through the other point of 
intersection of the two circles, but that involves looking at many different cases 
depending on the relative positions of the moving points.  

B1  

Consider the points R on a circle center P. Let X be the foot of the 

perpendicular from Q to k. Assume P is distinct from X, then we minimise QR 

(and hence maximise (QP + PR)/QR) for points R on the circle by taking R on 

the line PX. Moreover, R must lie on the same side of P as X. Hence if we allow 

R to vary over k, the points maximising (QP + PR)/QR must lie on the ray PX. 

Take S on the line PX on the opposite side of P from X so that PS = PQ. Then 

for points R on the ray PX we have (QP + PR)/QR = SR/QR = sin RQS/sin QSR. 

But sin QSR is fixed for points on the ray, so we maximise the ratio by taking 

�RQS = 90o. Thus there is a single point maximising the ratio.  

If P = X, then we still require �RQS = 90o, but R is no longer restricted to a line, 

so it can be anywhere on a circle center P.  

B2  

Take a2 x 1st equ - 2a x 2nd equ + 3rd equ. The rhs is 0. On the lhs the 

coefficient of xn is a2n - 2an3 + n5 = n(a - n2)2. So the lhs is a sum of non-

negative terms. Hence each term must be zero separately, so for each n either 

xn = 0 or a = n2. So there are just 5 solutions, corresponding to a = 1, 4, 9, 16, 

25. We can check that each of these gives a solution. [For a = n2, xn = n and 

the other xi are zero.]  

B3  

Each jump changes the parity of the shortest distance to E. The parity is initially 

even, so an odd number of jumps cannot end at E. Hence a2n-1 = 0. We derive 

a recurrence relation for a2n. This is not easy to do directly, so we introduce bn 

which is the number of paths length n from C to E. Then we have immediately:  
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    a2n = 2a2n-2 + 2b2n-2 for n > 1  

    b2n = 2b2n-2 + a2n-2 for n > 1  

Hence, using the first equation: a2n - 2a2n-2 = 2a2n-2 - 4a2n-4 + 2b2n-2 - 4b2n-4 

for n > 2. Using the second equation, this leads to: a2n = 4a2n-2 - 2a2n-4 for n > 

2. This is a linear recurrence relation with the general solution: a2n = a(2 + √2)n-1 

+ b(2 - √2)n-1. But we easily see directly that a4 = 2, a6 = 8 and we can now 

solve for the coefficients to get the solution given.  

IMO 1981 
A1  

We have PD.BC + PE.CA + PF.AB = 2 area of triangle. Now use Cauchy's 

inequality with x1 = √(PD·BC), x2 = √(PE·CA), x3 = √(PF·AB), and y1 = √(BC/PD), 

y2 = √(CA/PE), y3 = √(AB/PF). We get that (BC + CA + AB)2 < 2 x area of 

triangle x (BC/PD + CA/PE + AB/PF) with equality only if xi/yi = const, ie PD = 

PE = PF. So the unique minimum position for P is the incenter.  

A2  

Denote the binomial coefficient n!/(r!(n-r)!) by nCr.  

Evidently nCr F(n,r) = 1 (n-1)C(r-1) + 2 (n-2)C(r-1) + ... + (n-r+1) (r-1)C(r-1). 

[The first term denotes the contribution from subsets with smallest element 1, 

the second term smallest element 2 and so on.]  

Let the rhs be g(n,r). Then, using the relation (n-i)C(r-1) - (n-i-1)C(r-2) = (n-

i-1)C(r-1), we find that g(n,r) - g(n-1,r-1) = g(n-1,r), and we can extend this 

relation to r=1 by taking g(n,0) = n+1 = (n+1)C1. But g(n,1) = 1 + 2 + ... + n = 

n(n+1)/2 = (n+1)C2. So it now follows by an easy induction that g(n,r) = 

(n+1)C(r+1) = nCr (n+1)/(r+1). Hence F(n,r) = (n+1)/(r+1).  

A more elegant solution by Oliver Nash is as follows  

Let k be the smallest element. We want to evaluate g(n, r) = ∑k=1 to n-r+1 k   (n-

k)C(r-1). Consider the subsets with r+1 elements taken from 1, 2, 3, ... , n+1. 

Suppose k+1 is the second smallest element. Then there are k   (n-k)C(r-1) 

possible subsets. So g(n, r) = (n+1)C(r+1). Hence F(n, r) = (n+1)C(r+1) / nCr = 

(n+1)/(r+1), as required.  

A3  

Experimenting with small values suggests that the solutions of n2 - mn - m2 = 1 

or -1 are successive Fibonacci numbers. So suppose n > m is a solution. This 

suggests trying m+n, n: (m+n)2 - (m+n)n - n2 = m2 + mn - n2 = -(n2 - mn - 

m2) = 1 or -1. So if n > m is a solution, then m+n, n is another solution. 
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Running this forward from 2,1 gives 3,2; 5,3; 8,5; 13,8; 21,13; 34,21; 55,34; 

89,55; 144,89; 233,144; 377,233; 610,377; 987,610; 1597,987; 2584,1597.  

But how do we know that there are no other solutions? The trick is to run the 

recurrence the other way. For suppose n > m is a solution, then try m, n-m: m2 

- m(n-m) - (n-m)2 = m2 + mn - n2 = -(n2 - mn - m2) = 1 or -1, so that also 

satisfies the equation. Also if m > 1, then m > n-m (for if not, then n >= 2m, so 

n(n - m) >= 2m2, so n2 - nm - m2 >= m2 > 1). So given a solution n > m with m 

> 1, we have a smaller solution m > n-m. This process must eventually 

terminate, so it must finish at a solution n, 1 with n > 1. But the only such 

solution is 2, 1. Hence the starting solution must have been in the forward 

sequence from 2, 1.  

Hence the solution to the problem stated is 15972 + 9872.  

B1  

 (a)  n = 3 is not possible. For suppose x was the largest number in the set. 

Then x cannot be divisible by 3 or any larger prime, so it must be a power of 2. 

But it cannot be a power of 2, because 2m - 1 is odd and 2m - 2 is not a 

positive integer divisible by 2m.  

For k ≥ 2, the set 2k-1, 2k , ... , 4k-2 gives n = 2k. For k ≥ 3, so does the set 

2k-5, 2k-4, ... , 4k-6. For k ≥ 2, the set 2k-2, 2k-3, ... , 4k-2 gives n = 2k+1. 

For k ≥ 4 so does the set 2k-6,2k-5, ... , 4k-6. So we have at least one set for 

every n ≥ 4, which answers (a).  

(b)  We also have at least two sets for every n ≥ 4 except possibly n = 4, 5, 7. 

For 5 we may take as a second set: 8, 9, 10, 11, 12, and for 7 we may take 6, 

7, 8, 9 ,10, 11, 12. That leaves n = 4. Suppose x is the largest number in a set 

with n =4. x cannot be divisible by 5 or any larger prime, because x-1, x-2, x-3 

will not be. Moreover, x cannot be divisible by 4, because then x-1 and x-3 will 

be odd, and x-2 only divisible by 2 (not 4). Similarly, it cannot be divisible by 9. 

So the only possibilities are 1, 2, 3, 6. But we also require x ≥ 4, which 

eliminates the first three. So the only solution for n = 4 is the one we have 

already found: 3, 4, 5, 6.  

B2  

Let the triangle be ABC. Let the center of the circle touching AB and AC be D, 

the center of the circle touching AB and BC be E, and the center of the circle 

touching AC and BC be F. Because the circles center D and E have the same 

radius the perpendiculars from D and E to AB have the same length, so DE is 

parallel to AB. Similarly EF is parallel to BC and FD is parallel to CA. Hence DEF 

is similar and similarly oriented to ABC. Moreover D must lie on the angle 

bisector of A since the circle center D touches AB and AC. Similarly E lies on 

the angle bisector of B and F lies on the angle bisector of C. Hence the 
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incenter I of ABC is also the incenter of DEF and acts as a center of symmetry 

so that corresponding points P of ABC and P' of DEF lie on a line through I with 

PI/P'I having a fixed ratio. But OD = OE = OF since the three circles have equal 

radii, so O is the circumcenter of DEF. Hence it lies on a line with I and the 

circumcenter of ABC.  

B3  

f(1,n) = f(0,f(1,n-1)) = 1 + f(1,n-1). So f(1,n) = n + f(1,0) = n + f(0,1) = n + 2.  

f(2,n) = f(1,f(2,n-1)) = f(2,n-1) + 2. So f(2,n) = 2n + f(2,0) = 2n + f(1,1) = 2n + 

3.  

f(3,n) = f(2,f(3,n-1)) = 2f(3,n-1) + 3. Let un = f(3,n) + 3, then un = 2un-1. Also 

u0 = f(3,0) + 3 = f(2,1) + 3 = 8. So un = 2n+3, and f(3,n) = 2n+3 - 3.  

f(4,n) = f(3,f(4,n-1)) = 2f(4,n-1)+3 - 3. f(4,0) = f(3,1) = 24 - 3 = 13. We calculate 

two more terms to see the pattern: f(4,1) = 224 - 3, f(4,2) = 2224 - 3. In fact it 

looks neater if we replace 4 by 22, so that f(4,n) is a tower of n+3 2s less 3.  

 

IMO 1982 
A1  

We show that f(n) = [n/3] for n <= 9999, where [ ] denotes the integral part.  

We show first that f(3) = 1. f(1) must be 0, otherwise f(2) - f(1) - f(1) would be 

negative. Hence f(3) = f(2) + f(1) + 0 or 1 = 0 or 1. But we are told f(3) > 0, so 

f(3) = 1. It follows by induction that f(3n) ≥ n. For f(3n+3) = f(3) + f(3n) + 0 or 1 

= f(3n) + 1 or 2. Moreover if we ever get f(3n) > n, then the same argument 

shows that f(3m) > m for all m > n. But f(3.3333) = 3333, so f(3n) = n for all n 

<= 3333.  

Now f(3n+1) = f(3n) + f(1) + 0 or 1 = n or n + 1. But 3n+1 = f(9n+3) ≥ f(6n+2) + 

f(3n+1) ≥ 3f(3n+1), so f(3n+1) < n+1. Hence f(3n+1) = n. Similarly, f(3n+2) = n. 

In particular f(1982) = 660.  

A2 

Let Bi be the point of intersection of the interior angle bisector of the angle at Ai 

with the opposite side. The first step is to figure out which side of Bi Ti lies. Let 

A1 be the largest angle, followed by A2. Then T2 lies between A1 and B2, T3 lies 

between A1 and B3, and T1 lies between A2 and B1. For �OB2A1 = 180o - A1 - 

A2/2 = A3 + A2/2. But A3 + A2/2 < A1 + A2/2 and their sum is 180o, so A3 + A2/2 

< 90o. Hence T2 lies between A1 and B2. Similarly for the others.  
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Let O be the center of the incircle. Then �T1OS2 = �T1OT2 - 2 �T2OB2 = 180o - 

A3 - 2(90o - �OB2T2) = 2(A3 + A2/2) - A3 = A2 + A3. A similar argument shows 

�T1OS3 = A2 + A3. Hence S2S3 is parallel to A2A3.  

Now �T3OS2 = 360o - �T3OT1 - �T1OS2 = 360o - (180o - A2) - (A2 + A3) = 180o 

- A3 = A1 + A2. �T3OS1 = �T3OT1 + 2 �T1OB1 = (180o - A2) + 2(90o - �OB1T1) 

= 360o - A2 - 2(A3 + A1/2) = 2(A1 + A2 + A3) - A2 - 2A3 - A1 = A1 + A2 = 

�T3OS2. So S1S2 is parallel to A1A2. Similarly we can show that S1S3 is parallel to 

A1A3.  

So S1S2S3 is similar to A1A2A3 and turned through 180o. But M1M2M3 is also 

similar to A1A2A3 and turned through 180o. So S1S2S3 and M1M2M3 are similar 

and similarly oriented. Hence the lines through corresponding vertices are 

concurrent.  

A3  

 (a)  It is sufficient to show that the sum of the (infinite) sequence is at least 4. 

Let k be the greatest lower bound of the limits of all such sequences. Clearly k ≥ 
1. Given any ε > 0, we can find a sequence {xn} with sum less than k + ε. But 

we may write the sum as:  

x0
2/x1 + x1( (x1/x1)

2/(x2/x1) + (x2/x1)
2/(x3/x1) + ... + (xn/x1)

2/(xn+1/x1) + ... ).  

The term in brackets is another sum of the same type, so it is at least k. Hence 

k + ε > 1/x1 + x1k. This holds for all ε > 0, and so k ≥ 1/x1 + x1k. But 1/x1 + x1k ≥ 
2√k, so k ≥ 4.  

(b)  Let xn = 1/2n. Then x0
2/x1 + x1

2/x2 + ... + xn-1
2/xn = 2 + 1 + 1/2 + ... + 1/2n-2 

= 4 - 1/2n-2 < 4.  

B1  

If x, y is a solution then so is y-x, -x. Hence also -y, x-y. If the first two are the 

same, then y = -x, and x = y-x = -2x, so x = y = 0, which is impossible, since n 

> 0. Similarly, if any other pair are the same.  

2891 = 2 (mod 9) and there is no solution to x3 - 3xy2 + y3 = 2 (mod 9). The 

two cubes are each -1, 0 or 1, and the other term is 0, 3 or 6, so the only 

solution is to have the cubes congruent to 1 and -1 and the other term 

congruent to 0. But the other term cannot be congruent to 0, unless one of x, y 

is a multiple of 3, in which case its cube is congruent to 0, not 1 or -1.  

B2  

For an inelegant solution one can use coordinates. The advantage of this type 

of approach is that it is quick and guaranteed to work! Take A as (0,√3), B as 
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(1,√3), C as (3/2,√3/2, D as (1,0). Take the point X, coordinates (x,0), on ED. 

We find where the line BX cuts AC and CE. The general point on BX is (k + (1-

k)x,k√3). If this is also the point M with AM/AC = r then we have: k + (1-k)x = 

3r/2, k√3 = (1-r)√3 + r√3/2. Hence k = 1 - r/2, r = 2/(4-x). Similarly, if it is the 

point N with CN/CE = r, then k + (1-k)x = 3(1-r)/2, k√3 = (1-r)√3/2. Hence k = 

(1-r)/2 and r = (2-x)/(2+x). Hence for the ratios to be equal we require 2/(4-x) 

= (2-x)/(2+x), so x2 - 8x + 4 = 0. We also have x < 1, so x = 4 - √12. This 

gives r = 1/√3.  

A more elegant solution uses the ratio theorem for the triangle EBC. We have 

CM/MX XB/BE EN/NC = -1. Hence (1-r)/(r - 1/2) (-1/4) (1-r)/r = -1. So r = 

1/√3.  

B3  

Let the square be A'B'C'D'. The idea is to find points of L close to a particular 

point of A'D' but either side of an excursion to B'.  

We say L approaches a point P' on the boundary of the square if there is a point 

P on L with PP' ≤ 1/2. We say L approaches P' before Q' if there is a point P on 

L which is nearer to A0 (the starting point of L) than any point Q with QQ' ≤ 1/2.  

Let A' be the first vertex of the square approached by L. L must subsequently 

approach both B' and D'. Suppose it approaches B' first. Let B be the first point 

on L with BB' ≤ 1/2. We can now divide L into two parts L1, the path from A0 to 

B, and L2, the path from B to An.  

Take X' to be the point on A'D' closest to D' which is approached by L1. Let X 

be the corresponding point on L1. Now every point on X'D' must be approached 

by L2 (and X'D' is non-empty, because we know that D' is approached by L but 

not by L1). So by compactness X' itself must be approached by L2. Take Y to be 

the corresponding point on L2. XY ≤ XX' + X'Y ≤ 1/2 + 1/2 = 1. Also BB' ≤ 1/2, 

so XB ≥ X'B' - XX' - BB' ≥ X'B' - 1 ≥ A'B' - 1 = 99. Similarly YB ≥ 99, so the 

path XY ≥ 198.  

 

IMO 1984 
A1 

 (1 - 2x)(1 - 2y)(1 - 2z) = 1 - 2(x + y + z) + 4(yz + zx + xy) - 8xyz = 4(yz + zx 

+ xy) - 8xyz - 1. Hence yz + zx + xy - 2xyz = 1/4 (1 - 2x)(1 - 2y)(1 - 2z) + 

1/4. By the arithmetic/geometric mean theorem (1 - 2x)(1 - 2y)(1 - 2z) ≤ ((1 - 

2x + 1 - 2y + 1 - 2z)/3)3 = 1/27. So yz + zx + xy - 2xyz ≤ 1/4 28/27 = 7/27.  
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A2  

We find that (a + b)7 - a7 - b7 = 7ab(a + b)(a2 + ab + b2)2. So we must find a, b 

such that a2 + ab + b2 is divisible by 73.  

At this point I found a = 18, b = 1 by trial and error.  

A more systematic argument turns on noticing that a2 + ab + b2 = (a3 - b3)/(a - 

b), so we are looking for a, b with a3 = b3 (mod 73). We now remember that aφ(m) 

= 1 (mod m). But φ(73) = 2·3·49, so a3 = 1 (mod 343) if a = n98. We find 298 = 

18 (343), which gives the solution 18, 1.  

This approach does not give a flood of solutions. n98 = 0, 1, 18, or 324. So the 

only solutions we get are 1, 18; 18, 324; 1, 324.  

A3  

Suppose the result is false. Let C1 be any circle center O. Then the locus of 

points X such that C(X) = C1 is a spiral from O to the point of intersection of OA 

and C1. Every point of this spiral must be a different color from all points of the 

circle C1. Hence every circle center O with radius smaller than C1 must include a 

point of different color to those on C1. Suppose there are n colors. Then by 

taking successively smaller circles C2, C3, ... , Cn+1 we reach a contradiction, 

since each circle includes a point of different color to those on any of the larger 

circles.  

B1  

If AB and CD are parallel, then AB is tangent to the circle on diameter CD if and 

only if AB = CD and hence if and only if ABCD is a parallelogram. So the result 

is true.  

Suppose then that AB and DC meet at O. Let M be the midpoint of AB and N the 

midpoint of CD. Let S be the foot of the perpendicular from N to AB, and T the 

foot of the perpendicular fromM to CD. We are given that MT = MA. OMT, ONS 

are similar, so OM/MT = ON/NS and hence OB/OA = (ON - NS)/(ON + NS). So 

AB is tangent to the circle on diameter CD if and only if OB/OA = OC/OD which 

is the condition for BC to be parallel to AD.  

B2  

Given any diagonal AX, let B be the next vertex counterclockwise from A, and Y 

the next vertex counterclockwise from X. Then the diagonals AX and BY 

intersect at K. AK + KB > AB and XK + KY > XY, so AX + BY > AB + XY. Keeping 

A fixed and summing over X gives n - 3 cases. So if we then sum over A we get 

every diagonal appearing four times on the lhs and every side appearing 2(n-3) 

times on the rhs, giving 4d > 2(n-3)p.  
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Denote the vertices as A0, ... , An-1 and take subscripts mod n. The ends of a 

diagonal AX are connected by r sides and n-r sides. The idea of the upper limit 

is that its length is less than the sum of the shorter number of sides. Evaluating 

it is slightly awkward.  

We consider n odd and n even separately. Let n = 2m+1. For the diagonal AiAi+r 

with r ≤ m, we have AiAi+r ≤ AiAi+2 + ... + AiAi+r. Summing from r = 2 to m gives 

for the rhs (m-1)AiAi+1 + (m-1)Ai+1Ai+2 + (m-2)Ai+2Ai+3 + (m-3)Ai+3Ai+4 + ... + 

1.Ai+m-1Ai+m. Now summing over i gives d for the lhs and p( (m-1) + (1 + 2 + ... 

+ m-1) ) = p( (m2 + m - 2)/2 ) for the rhs. So we get 2d/p ≤ m2 + m - 2 = 

[n/2] [(n+1)/2] - 2.  

Let n = 2m. As before we have AiAi+r <= AiAi+2 + ... + AiAi+r for 2 ≤ r ≤ m-1. We 

may also take AiAi+m ≤ p/2. Summing as in the even case we get 2d/p = m2 - 2 

= [n/2] [(n+1)/2] - 2.  

B3  

a < c, so a(d - c) < c (d - c) and hence bc - ac < c(d - c). So b - a < d - c, 

or a + d > b + c, so k > m.  

bc = ad, so b(2m - b) = a(2k - a). Hence b2 - a2 = 2m(b - 2k-ma). But b2 - a2 = 

(b + a)(b - a), and (b + a) and (b - a) cannot both be divisible by 4 (since a 

and b are odd), so 2m-1 must divide b + a or b - a. But if it divides b - a, then b 

- a ≥ 2m-1, so b and c > 2m-1 and b + c > 2m. Contradiction. Hence 2m-1 divides 

b + a. If b + a ≥ 2m = b + c, then a ≥ c. Contradiction. Hence b + a = 2m-1.  

So we have b = 2m-1 - a, c = 2m-1 + a, d = 2k - a. Now using bc = ad gives: 2ka 

= 22m-2. But a is odd, so a = 1.  

IMO 1985 
A1 

Let the circle touch AD, CD, BC at L, M, N respectively. Take X on the line AD 

on the same side of A as D, so that AX = AO, where O is the center of the 

circle. Now the triangles OLX and OMC are congruent: OL = OM = radius of 

circle, �OLX = �OMC = 90o, and �OXL = 90o - A/2 = (180o - A)/2 = C/2 (since 

ABCD is cyclic) = �OCM. Hence LX = MC. So OA = AL + MC. Similarly, OB = 

BN + MD. But MC = CN and MD = DL (tangents have equal length), so AB = OA 

+ OB = AL + LD + CN + NB = AD + BC.  

A2  

n and k are relatively prime, so 0, k, 2k, ... , (n-1)k form a complete set of 

residues mod n. So k, 2k, ... , (n-1)k are congruent to the numbers 1, 2, ... , n-

1 in some order. Suppose ik is congruent to r and (i+1)k is congruent to s. Then 

either s = r + k, or s = r + k - n. If s = r + k, then we have immediately that r = s 
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- k and s have the same color. If s = r + k - n, then r = n - (k - s), so r has the 

same color as k - s, and k - s has the same color as s. So in any case r and s 

have the same color. By giving i values from 1 to n-2 this establishes that all 

the numbers have the same color.  

A3  

If i is a power of 2, then all coefficients of Qi are even except the first and last. 

[There are various ways to prove this. Let iCr denote the rth coefficient, so iCr = 

i!/(r!(i-r)!). Suppose 0 < r < i. Then iCr = i-1Cr-1 i/r, but i-1Cr-1 is an integer 

and i is divisible by a higher power of 2 than r, hence iCr is even.]  

Let Q = Qi1 + ... + Qin. We use induction on in. If in = 1, then we must have n = 

2, i1 = 0, and i2 = 1, so Q = 2 + x, which has the same number of odd 

coefficients as Qi1 = 1. So suppose it is true for smaller values of in. Take m a 

power of 2 so that m ≤ in < 2m. We consider two cases i1 ≥ m and i1 < m.  

Consider first i1 ≥ m. Then Qi1 = (1 + x)mA, Q = (1 + x)mB, where A and B have 

degree less than m. Moreover, A and B are of the same form as Qi1 and Q, (all 

the ijs are reduced by m, so we have o(A) ≤ o(B) by induction. Also o(Qi1) = 

o((1 + x)mA) = o(A + xmA) = 2o(A) ≤ 2o(B) = o(B + xmB) = o((1 + x)mB) = o(Q), 

which establishes the result for in.  

It remains to consider the case i1 < m. Take r so that ir < m, ir+1 > m. Set A = Qi1 

+ ... + Qir, (1 + x)mB = Qir+1 + ... + Qin, so that A and B have degree < m. Then 

o(Q) = o(A + (1 + x)mB) = o(A + B + xmB) = o(A + B) + o(B). Now o(A - B) + 

o(B) >= o(A - B + B) = o(A), because a coefficient of A is only odd if just one 

of the corresponding coefficients of A - B and B is odd. But o(A - B) = o(A + 

B), because corresponding coefficients of A - B and A + B are either equal or 

of the same parity. Hence o(A + B) + o(B) ≥ o(A). But o(A) ≥ o(Qii) by induction. 

So we have established the result for in.    

B1  

Suppose we have a set of at least 3.2n+1 numbers whose prime divisors are all 

taken from a set of n. So each number can be written as p1
r
1...pn

r
n for some 

non-negative integers ri, where pi is the set of prime factors common to all the 

numbers. We classify each ri as even or odd. That gives 2n possibilities. But 

there are more than 2n + 1 numbers, so two numbers have the same 

classification and hence their product is a square. Remove those two and look 

at the remaining numbers. There are still more than 2n + 1, so we can find 

another pair. We may repeat to find 2n + 1 pairs with a square product. [After 

removing 2n pairs, there are still 2n + 1 numbers left, which is just enough to 

find the final pair.] But we may now classify these pairs according to whether 

each exponent in the square root of their product is odd or even. We must find 

two pairs with the same classification. The product of these four numbers is 

now a fourth power.  
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Applying this to the case given, there are 9 primes less than or equal to 23 (2, 

3, 5, 7, 11, 13, 17, 19, 23), so we need at least 3.512 + 1 = 1537 numbers for 

the argument to work (and we have 1985).  

The key is to find the 4th power in two stages, by first finding lots of squares. If 

we try to go directly to a 4th power, this type of argument does not work (we 

certainly need more than 5 numbers to be sure of finding four which sum to 0 

mod 4, and 59 is far too big).  

B2  

The three radical axes of the three circles taken in pairs, BM, NK and AC are 

concurrent. Let X be the point of intersection. [They cannot all be parallel or B 

and M would coincide.] The first step is to show that XMNC is cyclic. The 

argument depends slightly on how the points are arranged. We may have: 

�XMN = 180o - �BMN = �BKN = 180o - �AKN = �ACN = 180o - �XCN, or we 

may have �XMN = 180o - �BMN = 180o - �BKN = �AKN = 180o - �ACN = 

180o - �XCN.  

Now XM.XB = XK.XN = XO2 - ON2. BM·BX = BN·BC = BO2 - ON2, so XM·XB - 

BM·BX = XO2 - BO2. But XM·XB - BM·BX = XB(XM - BM) = (XM + BM)(XM - 

BM) = XM2 - BM2. So XO2 - BO2 = XM2 - BM2. Hence OM is perpendicular to 

XB, or �OMB = 90o.  

B3  

Define S0(x) = x, Sn(x) = Sn-1(x) (Sn-1(x) + 1/n). The motivation for this is that xn 

= Sn-1(x1).  

Sn(0) = 0 and Sn(1) > 1 for all n > 1. Also Sn(x) has non-negative coefficients, 

so it is strictly increasing in the range [0,1]. Hence we can find (unique) 

solutions an, bn to Sn(an) = 1 - 1/n, Sn(bn) = 1.  

Sn+1(an) = Sn(an) (Sn(an) + 1/n) = 1 - 1/n > 1 - 1/(n+1), so an < an+1. Similarly, 

Sn+1(bn) = Sn(bn) (Sn(bn) + 1/n) = 1 + 1/n > 1, so bn > bn+1. Thus an is an 

increasing sequence and bn is a decreasing sequence with all an less than all 

bn. So we can certainly find at least one point x1 which is greater than all the an 

and less than all the bn. Hence 1 - 1/n < Sn(x1) < 1 for all n. But Sn(x1) = xn+1. 

So xn+1 < 1 for all n. Also xn > 1 - 1/n implies that xn+1 = xn(xn + 1/n) > xn. 

Finally, we obviously have xn > 0. So the resulting series xn satisfies all the 

required conditions.  

It remains to consider uniqueness. Suppose that there is an x1 satisfying the 

conditions given. Then we must have Sn(x1) lying in the range 1 - 1/n, 1 for all 

n. [The lower limit follows from xn+1 = xn(xn + 1/n).] Hence we must have an < x1 

< bn for all n. We show uniqueness by showing that bn - an tends to zero as n 

tends to infinity. Since all the coefficients of Sn(x) are non-negative, it is has 
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increasing derivative. Sn(0) = 0 and Sn(bn) = 1, so for any x in the range 0, bn 

we have Sn(x) ≤ x/bn. In particular, 1 - 1/n < an/bn. Hence bn - an ≤ bn - bn(1 - 

1/n) = bn/n < 1/n, which tends to zero.  

 

IMO 1986 
A1  

Consider residues mod 16. A perfect square must be 0, 1, 4 or 9 (mod 16). d 

must be 1, 5, 9, or 13 for 2d - 1 to have one of these values. However, if d is 1 

or 13, then 13d - 1 is not one of these values. If d is 5 or 9, then 5d - 1 is not 

one of these values. So we cannot have all three of 2d - 1, 5d - 1, 13d - 1 

perfect squares.  

Alternative solution from Marco Dalai  

Suppose 2d-1, 5d-1, 13d-1 are all squares. Squares mod 4 must be 0 or 1, 

considering 2d-1, so d must be odd. Put d = 2k+1. Then 10k+4 = b2. So b must 

be even, so k must be even. Put k = 2h, then 5k+1 is a square. Similarly, 

52h+12 is a square, so 13h+3 is a square. Hence (13h+3)-(5h+1) = 8h+2 is a 

difference of two squares, which is impossible (a difference of two squares 

must be 0, 1, or 3 mod 4).  

A2  

The product of three successive rotations about the three vertices of a triangle 

must be a translation (see below). But that means that P1986 (which is the result 

of 662 such operations, since 1986 = 3 x 662) can only be P0 if it is the identity, 

for a translation by a non-zero amount would keep moving the point further 

away. It is now easy to show that it can only be the identity if the triangle is 

equilateral. Take a circle center A1, radius A1A2 and take P on the circle so that 

a 120o clockwise rotation about A1 brings P to A2. Take a circle center A3, radius 

A3A2 and take Q on the circle so that a 120o clockwise rotation about A3 takes 

A2 to Q. Then successive 120o clockwise rotations about A1, A2, A3 take P to Q. 

So if these three are equivalent to the identity we must have P = Q. Hence 

�A1A2A3 = �A1A2P + �A3A2P = 30o + 30o = 60o. Also A2P = 2A1A2cos 30o and = 

2A2A3cos 30o. Hence A1A2 = A2A3. So A1A2A2 is equilateral. Note in passing that 

it is not sufficient for the triangle to be equilateral. We also have to take the 

rotations in the right order. If we move around the vertices the opposite way, 

then we get a net translation.  

It remains to show that the three rotations give a translation. Define rectangular 

coordinates (x, y) by taking A1 to be the origin and A2 to be (a, b). Let A3 be (c, 

d). A clockwise rotation through 120 degrees about the origin takes (x, y) to (-

x/2 + y√3/2, -x√3/2 - y/2). A clockwise rotation through 120 degrees about 

some other point (e, f) is obtained by subtracting (e, f) to get (x - e, y - f), the 
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coordinates relative to (e, f), then rotating, then adding (e, f) to get the 

coordinates relative to (0, 0). Thus after the three rotations we will end up with a 

linear combination of x's, y's, a's, b's, c's and d's for each coordinate. But the 

linear combination of x's and y's must be just x for the x-coordinate and y for 

the y-coordinate, since three successive 120 degree rotations about the same 

point is the identity. Hence we end up with simply (x + constant, y + constant), 

in other words, a translation.  

[Of course, there is nothing to stop you actually carrying out the computation. It 

makes things slightly easier to take the triangle to be (0, 0), (1, 0), (a, b). The 

net result turns out to be (x, y) goes to (x + 3a/2 - b√3/2, y - √3 + a√3/2 + 

3b/2). For this to be the identity requires a = 1/2, b = √3/2. So the third vertex 

must make the triangle equilateral (and it must be on the correct side of the line 

joining the other two). This approach avoids the need for the argument in the 

first paragraph above, but is rather harder work.]    

A3  

Let S be the sum of the absolute value of each set of adjacent vertices, so if 

the integers are a, b, c, d, e, then S = |a| + |b| + |c| + |d| + |e| + |a + b| + 

|b + c| + |c + d| + |d + e| + |e + a| + |a + b + c| + |b + c + d| + |c + d + e| 

+ |d + e + a| + |e + a + b| + |a + b + c + d| + |b + c + d + e| + |c + d + e + 

a| + |d + e + a + b| + |e + a + b + c| + |a + b + c + d + e|. Then the 

operation reduces S, but S is a greater than zero, so the process must 

terminate in a finite number of steps. So see that S is reduced, we can simply 

write out all the terms. Suppose the integers are a, b, c, d, e before the 

operation, and a+b, -b, b+c, d, e after it. We find that we mostly get the same 

terms before and after (although not in the same order), so that the sum S' after 

the operation is S - |a + c + d + e| + |a + 2b + c + d + e|. Certainly a + c + d 

+ e > a + 2b + c + d + e since b is negative, and a + c + d + e > -(a + 2b+ c + 

d + e) because a + b + c + d + e > 0.  

S is not the only expression we can use. If we take T = (a - c)2 + (b - d)2 + (c - 
e)2 + (d - a)2 +(e - b)2, then after replacing a, b, c by a+b, -b, b+c, we get T' 
= T + 2b(a + b + c + d + e) < T. Thanks to Demetres Chrisofides for T  

B1  

Take AB = 2 and let M be the midpoint of AB. Take coordinates with origin at A, 

x-axis as AB and y-axis directed inside the n-gon. Let Z move along AB from B 

towards A. Let �YZA be t. Let the coordinates of X be (x, y). �YZX = π/2 - π/n, 

so XZ = 1/sin π/n and y = XZ sin(t + π/2 - π/n) = sin t + cot π/n cos t.  

BY sin 2π/n = YZ sin t = 2 sin t. MX = cot π/n. So x = MY cos t - BY cos 2π/n + 

MX sin t = cos t + (cot π/n - 2 cot 2π/n) sin t = cos t + tan π/n sin t = y tan π/n. 

Thus the locus of X is a star formed of n lines segments emanating from O. X 

moves out from O to the tip of a line segement and then back to O, then out 
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along the next segment and so on. x2 + y2 = (1/sin2π/n + 1/cos2π/n) cos2(t + 

π/n). Thus the length of each segment is (1 - cos π/n)/(sin π/n cos π/n).  

B2  

f(x+2) = f(xf(2)) f(2) = 0. So f(x) = 0 for all x ≥ 2.  

f(y) f((2-y)f(y)) = f(2) = 0. So if y < 2, then f((2-y) f(y)) = 0 and hence (2 - y) 

f(y) ≥ 2, or f(y) ≥ 2/(2 - y).  

Suppose that for some y0 we have f(y0) > 2/(2 - y0), then we can find y1 > y0 

(and y1 < 2) so that f(y0) = 2/(2 - y1). Now let x1 = 2 - y1. Then f(x1f(y0)) = f(2) 

= 0, so f(x1 + y0) = 0. But x1 + y0 < 2. Contradiction. So we must have f(x) = 

2/(2 - x) for all x < 2.  

We have thus established that if a function f meets the conditions then it must 

be defined as above. It remains to prove that with this definition f does meet the 

conditions. Clearly f(2) = 0 and f(x) is non-zero for 0 ≤ x < 2. f(xf(y)) = f(2x/(2 - 

y)). If 2x/(2 - y) ≥ 2, then f(xf(y)) = 0. But it also follows that x + y ≥ 2, and so 

f(x + y) = 0 and hence f(xf(y)) f(y) = f(x + y) as required. If 2x/(2 - y) < 2, then 

f(xf(y)) f(y) = 2/(2 - 2x/(2-y)) 2/(2 - y) = 2/(2 - x - y) = f(x + y). So the unique 

function satisfying the conditions is:  

      f(x) = 0 for x ≥ 2, and 2/(2 - x) for 0 ≤ x < 2.  

B3  

Answer: yes.  

We prove the result by induction on the number n of points. It is clearly true for 

n = 1. Suppose it is true for all numbers less than n. Pick an arbitrary point P 

and color it red. Now take a point in the same row and color it white. Take a 

point in the same column as the new point and color it red. Continue until either 

you run out of eligible points or you pick a point in the same column as P. The 

process must terminate because there are only finitely many points. Suppose 

the last point picked is Q. Let S be the set of points picked.  

If Q is in the same column as P, then it is colored white (because the "same 

row" points are all white, and the "same column" points are all red). Now every 

row and column contains an equal number of red points of S and of white 

points of S. By induction we can color the points excluding those in S, then the 

difference between the numbers of red and white points in each row and 

column will be unaffected by adding the points in S and so we will have a 

coloring for the whole set. This completes the induction for the case where Q is 

in the same column as P.  
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If it is not, then continue the path backwards from P. In other words, pick a 

point in the same column as P and color it white. Then pick a point in the same 

row as the new point and color it red and so on. Continue until either you run 

out of eligible points or you pick a point to pair with Q. If Q was picked as being 

in the same row as its predecessor, this means a point in the same column as 

Q; if Q was picked as being in the same column as its predecessor, this means 

a point in the same row as Q. Again the process must terminate. Suppose the 

last point picked is R. Let S be the set of all points picked.  

If R pairs with Q, then we can complete the coloring by induction as before. 

Suppose S does not pair with Q. Then there is a line (meaning a row or column) 

containing Q and no uncolored points. There is also a line containing R and no 

uncolored points. These two lines have an excess of one red or one white. All 

other lines contain equal number of red and white points of S. Now color the 

points outside S by induction. This gives a coloring for the whole set, because 

no line with a color excess in S has any points outside S. So we have 

completed the induction.  

 

IMO 1987 
 

A1 

First Solution 

We show first that the number of permutations of n objects with no fixed points 

is n!(1/0! - 1/1! + 1/2! - ... + (-1)n/n!). This follows immediately from the law 

of inclusion and exclusion: let Ni be the number which fix i, Nij the number which 

fix i and j, and so on. Then N0, the number with no fixed points, is n! - all Ni + 

all Nij - ... + (-1)nN1...n. But Ni = (n-1)!, Nij = (n-2)! and so on. So N0 = n! ( 1 - 

1/1! + ... + (-1)r(n-r)!/(r! (n-r)!) + ... + (-1)n/n!) = n! (1/0! - 1/1! + ... + (-

1)n/n!).  

Hence the number of permutations of n objects with exactly r fixed points = no. 

of ways of choosing the r fixed points x no. of perms of the remaining n - r 

points with no fixed points = n!/(r! (n-r)!) x (n-r)! (1/0! - 1/1! + ... + (-1)n-r/(n-

r)! ). Thus we wish to prove that the sum from r = 1 to n of 1/(r-1)! (1/0! - 1/1! 

+ ... + (-1)n-r/(n-r)! ) is 1. We use induction on n. It is true for n = 1. Suppose it 

is true for n. Then the sum for n+1 less the sum for n is: 1/0! (-1)n/n! + 1/1! (-

1)n-1/(n-1)! + ... + 1/n! 1/0! = 1/n! (1 - 1)n = 0. Hence it is true for n + 1, and 

hence for all n.  

Comment  

This is a plodding solution. If you happen to know the result for no fixed points 

(which many people do), then it is essentially a routine induction.  
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Second solution  

Count all pairs (x, s) where s is a permutation with x a fixed point of x. Clearly, if 

we fix x, then there are (n-1)! possible permutations s. So the total count is n!. 

But if we count the number of permutations s with exactly k fixed points, then 

we get the sum in the question.  

Comment  

This much more elegant solution is due to Gerhard Wöginger (email 24 Aug 99). 
   

A2  

by Gerhard Wöginger  

AKL and AML are congruent, so KM is perpendicular to AN and area AKNM = 

KM.AN/2.  

AKLM is cyclic (2 opposite right angles), so angle AKM = angle ALM and hence 

KM/sin BAC = AM/sin AKM (sine rule) = AM/sin ALM = AL.  

ABL and ANC are similar, so AB.AC = AN.AL. Hence area ABC = 1/2 AB.AC sin 

BAC = 1/2 AN.AL sin BAC = 1/2 AN.KM = area AKNM.  

A3  

This is an application of the pigeon-hole principle.  

Assume first that all xi are non-negative. Observe that the sum of the xi is at 

most √n. [This is a well-known variant, (∑1≤i≤n xi)
2 ≤ n ∑1≤i≤n xi

2, of the AM-GM 

result. See, for example, Arthur Engel, Problem Solving Strategies, Springer 

1998, p163, ISBN 0387982191].  

Consider the kn possible values of ∑1≤i≤n bixi, where each bi is an integer in the 

range [0,k-1]. Each value must lie in the interval [0, k-1 √n]. Divide this into 

kn-1 equal subintervals. Two values must lie in the same subinterval. Take their 

difference. Its coefficients are the required ai. Finally, if any xi are negative, 

solve for the absolute values and then flip signs in the ai.  

Comment  

This solution is due to Gerhard Woeginger, email 24 Aug 99.    

B1  

We prove that if f(f(n)) = n + k for all n, where k is a fixed positive integer, then 

k must be even. If k = 2h, then we may take f(n) = n + h.  
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Suppose f(m) = n with m = n (mod k). Then by an easy induction on r we find 

f(m + kr) = n + kr, f(n + kr) = m + k(r+1). We show this leads to a contradiction. 

Suppose m < n, so n = m + ks for some s > 0. Then f(n) = f(m + ks) = n + ks. 

But f(n) = m + k, so m = n + k(s - 1) ≥ n. Contradiction. So we must have m ≥ 
n, so m = n + ks for some s ≥ 0. But now f(m + k) = f(n + k(s+1)) = m + k(s + 

2). But f(m + k) = n + k, so n = m + k(s + 1) > n. Contradiction.  

So if f(m) = n, then m and n have different residues mod k. Suppose they have 

r1 and r2 respectively. Then the same induction shows that all sufficiently large s 

= r1 (mod k) have f(s) = r2 (mod k), and that all sufficiently large s = r2 (mod k) 

have f(s) = r1 (mod k). Hence if m has a different residue r mod k, then f(m) 

cannot have residue r1 or r2. For if f(m) had residue r1, then the same argument 

would show that all sufficiently large numbers with residue r1 had f(m) = r (mod 

k). Thus the residues form pairs, so that if a number is congruent to a particular 

residue, then f of the number is congruent to the pair of the residue. But this is 

impossible for k odd.  

A better solution by Sawa Pavlov is as follows  

Let N be the set of non-negative integers. Put A = N - f(N) (the set of all n such 

that we cannot find m with f(m) = n). Put B = f(A).  

Note that f is injective because if f(n) = f(m), then f(f(n)) = f(f(m)) so m = n. We 

claim that B = f(N) - f( f(N) ). Obviously B is a subset of f(N) and if k belongs to 

B, then it does not belong to f( f(N) ) since f is injective. Similarly, a member of 

f( f(N) ) cannot belong to B.  

Clearly A and B are disjoint. They have union N - f( f(N) ) which is {0, 1, 2, ... , 

1986}. But since f is injective they have the same number of elements, which is 

impossible since {0, 1, ... , 1986} has an odd number of elements.  

B2  

Let xn be the point with coordinates (n, n2) for n = 1, 2, 3, ... . We show that the 

distance between any two points is irrational and that the triangle determined by 

any 3 points has non-zero rational area.  

Take n > m. |xn - xm| is the hypoteneuse of a triangle with sides n - m and n2 - 

m2 = (n - m)(n + m). So |xn - xm| = (n - m)√(1 + (n+m)2). Now (n + m)2 < (n + 

m)2 + 1 < (n + m + 1)2 = (n + m)2 + 1 + 2(n + m), so (n + m)2 + 1 is not a 

perfect square. Hence its square root is irrational. [For this we may use the 

classical argument. Let N' be a non-square and suppose √N' is rational. Since 

N' is a non-square we must be able to find a prime p such that p2a+1 divides N' 

but p2a+2 does not divide N' for some a ≥ 0. Define N = N'/p2a. Then √N = 

(√N')/pa, which is also rational. So we have a prime p such that p divides N, but 

p2 does not divide N. Take √N = r/s with r and s relatively prime. So s2N = r2. 

Now p must divide r, hence p2 divides r2 and so p divides s2. Hence p divides s. 
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So r and s have a common factor. Contradiction. Hence non-squares have 

irrational square roots.]  

Now take a < b < c. Let B be the point (b, a2), C the point (c, a2), and D the 

point (c, b2). Area xaxbxc = area xaxcC - area xaxbB - area xbxcD - area xbDCB = 

(c - a)(c2 - a2)/2 - (b - a)(b2 - a2)/2 - (c - b)(c2 - b2)/2 - (c - b)(b2 - a2) 

which is rational.  

B3  

First observe that if m is relatively prime to b + 1, b + 2, ... , 2b - 1, 2b, then it 

is not divisible by any number less than 2b. For if c <= b, then take the largest j 

≥ 0 such that 2jc ≤ b. Then 2j+1c lies in the range b + 1, ... , 2b, so it is relatively 

prime to m. Hence c is also. If we also have that (2b + 1)2 > m, then we can 

conclude that m must be prime, since if it were composite it would have a 

factor ≤ √m.  

Let n = 3r2 + h, where 0 ≤ h < 6r + 3, so that r is the greatest integer less than 

or equal to √(n/3). We also take r ≥ 1. That excludes the value n = 2, but for n = 

2, the result is vacuous, so nothing is lost.  

Assume that n + k(k+1) is prime for k = 0, 1, ... , r. We show by induction that N 

= n + (r + s)(r + s + 1) is prime for s = 1, 2, ... , n - r - 2. By the observation 

above, it is sufficient to show that (2r + 2s + 1)2 > N, and that N is relatively 

prime to all of r + s + 1, r + s + 2, ... , 2r + 2s. We have (2r + 2s + 1)2 = 4r2 + 

8rs + 4s2 + 4r + 4s + 1. Since r, s ≥ 1, we have 4s + 1 > s + 2, 4s2 > s2, and 6rs 

> 3r. Hence (2r + 2s + 1)2 > 4r2 + 2rs + s2 + 7r + s + 2 = 3r2 + 6r + 2 + (r + s)(r 

+ s + 1) >= N.  

Now if N has a factor which divides 2r - i with i in the range -2s to r - s - 1, 

then so does N - (i + 2s + 1)(2r - i) = n + (r - i - s - 1)(r - i - s) which has the 

form n + s'(s'+1) with s' in the range 0 to r + s - 1. But n + s'(s' + 1) is prime 

by induction (or absolutely for s = 1), so the only way it can have a factor in 

common with 2r - i is if it divides 2r - i. But 2r - i ≤ 2r + 2s ≤ 2n - 4 < 2n and n 

+ s'(s' + 1) ≥ n, so if n + s'(s' + 1) has a factor in common with 2r - i, then it 

equals 2r - i = s + r + 1 + s'. Hence s'2 = s - (n - r - 1) < 0, which is not 

possible. So we can conclude that N is relatively prime to all of r + s + 1, ... , 2r 

+ 2s and hence prime.    

IMO 1988 
A1  

 (i)  Let M be the midpoint of BC. Let PM = x. Let BC meet the small circle again 

at Q. Let O be the center of the circles. Since angle APQ = 90 degrees, AQ is a 

diameter of the small circle, so its length is 2r. Hence AP2 = 4r2 - 4x2. BM2 = R2 

- OM2 = R2 - (r2 - x2). That is essentially all we need, because we now have: 

AB2 + AC2 + BC2 = (AP2 + (BM - x)2) + (AP2 + (BM + x)2) + 4BM2 = 2AP2 + 6BM2 
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+ 2x2 = 2(4r2 - 4x2) + 6(R2 - r2 + x2) + 2x2 = 6R2 + 2r2 , which is independent of 

x.  

(ii)  M is the midpoint of BC and PQ since the circles have a common center. If 

we shrink the small circle by a factor 2 with P as center, then Q moves to M, 

and hence the locus of M is the circle diameter OP.  

A2  

Answer: n even.  

Each of the 2n elements of Ai belongs to at least one other Aj because of (iii). 

But given another Aj it cannot contain more than one element of Ai because of 

(ii). There are just 2n other Aj available, so each must contain exactly one 

element of Ai. Hence we can strengthen (iii) to every element of B belongs to 

exactly two of the As.  

This shows that the arrangement is essentially unique. We may call the element 

of B which belongs to Ai and Aj (i,j). Then Ai contains the 2n elements (i, j) with 

j not i.  

|B| = 1/2 x no. of As x size of each A = n(2n+1). If the labeling with 0s and 1s 

is possible, then if we list all the elements in each A, n(2n+1) out of the 

2n(2n+1) elements have value 0. But each element appears twice in this list, so 

n(2n+1) must be even. Hence n must be even.  

Next part thanks to Stan Dolan  

Label (i,j) 0 if j = i-n/2, i-(n/2 - 1), ... , i-1, i+1, i+2, ... , i+n/2 (working mod 

2n+1 when necessary). This clearly has the required property.  

My original solution was a pedestrian induction:  

We show by induction that a labeling is always possible for n even. If n = 2, 

there is certainly a labeling. For example, we may assign 0 to (1,2), (1,3), (2,4), 

(3,5), (4,5). Now suppose we have a labeling for n. For n + 2, we label (i , j) 0 if 

it was labeled 0 for n or if it is:  

    (i, 2n+2) or (i, 2n+3) for i = 1, 2, ... , n+1  

    (i, 2n+4) or (i, 2n+5) for i = n+2, n+3, ... , 2n+1  

    (2n+2, 2n+4), (2n+3, 2n+5), (2n+4,2n+5).  

For i = 1, 2, ... n+1, Ai has n elements (i, j) labeled zero with j ≤ 2n+1 and also 

(i, 2n+2) and (i, 2n+3), giving n+2 in all. For i = n+2, n+3, ... , 2n+1, Ai has n 

elements (i, j) labeled zero with j ≤ 2n+1 and also (i, 2n+4) and (i, 2n+5), giving 

n+2 in all. A2n+2 has the n+1 elements (i, 2n+2) with i <= n+1 and also (2n+2, 

2n+4), giving n+2 in all. A2n+3 has the n+1 elements (i, 2n+3) for i ≤ n+1 and 

also (2n+3, 2n+5), giving n+2 in all. A2n+4 has the n elements (i, 2n+4) with n+2 

≤ i ≤ 2n+1 and also (2n+2, 2n+4) and (2n+4, 2n+5), giving n+2 in all. Finally 
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A2n+5 has the n elements (i, 2n+5) with n+2 ≤ i ≤ 2n+1 and also (2n+3, 2n+5) 

and (2n+4, 2n+5), giving n+2 in all.  

A3  

Answer: 92.  

f(n) is always odd. If n = br+1br...b2b1b0 in binary and n is odd, so that br+1 = b0 

= 1, then f(n) = br+1b1b2...brb0. If n has r+2 binary digits with r > 0, then there 

are 2[(r+1)/2] numbers with the central r digits symmetrical, so that f(n) = n 

(because we can choose the central digit and those lying before it arbitarily, the 

rest are then determined). Also there is one number with 1 digit (1) and one 

number with two digits (3) satisfying f(n) = 1. So we find a total of 1 + 1 + 2 + 2 

+ 4 + 4 + 8 + 8 + 16 + 16 = 62 numbers in the range 1 to 1023 with f(n) = n. 

1988 = 11111000011. So we also have all 32 numbers in the range 1023 to 

2047 except for 11111111111 and 11111011111, giving another 30, or 92 in 

total.  

It remains to prove the assertions above. f(n) odd follows by an easy induction. 

Next we show that if 2m < 2n+1 < 2m+1, then f(2n+1) = f(n) + 2m. Again we use 

induction. It is true for m = 1 (f(3) = f(1) + 2). So suppose it is true for 1, 2, ... , 

m. Take 4n+1 so that 2m+1 < 4n+1 < 2m+2, then f(4n+1) = 2f(2n+1) - f(n) = 

2(f(n) + 2m) - f(n) = f(n) + 2m+1 = f(2n) + 2m+1, so it is true for 4n+1. Similarly, if 

4n+3 satisfies, 2m+1 < 4n+3 < 2m+2, then f(4n+3) = 3f(2n+1) - 2f(n) = f(2n+1) + 

2(f(n) + 2m) - 2f(n) = f(2n+1) + 2m+1, so it is true for 4n+3 and hence for m+1.  

Finally, we prove the formula for f(2n+1). Let 2n+1 = br+1br...b2b1b0 with b0 = 

br+1 = 1. We use induction on r. So assume it is true for smaller values. Say b1 = 

... = bs = 0 and bs+1 = 1 (we may have s = 0, so that we have simply b1 = 1). 

Then n = br+1 ... b1 and f(n) = br+1bs+2bs+3...brbs+1 by induction. So f(n) + 2r+1 = 

br+10...0br+1bs+2...brbs+1, where there are s zeros. But we may write this as 

br+1b1...bsbs+1...brbr+1, since b1 = ... = bs = 0, and bs+1 = br+1 = 1. But that is the 

formula for f(2n+1), so we have completed the induction.  

B1  

Let f(x) = 1/(x - 1) + 2/(x - 2) + 3/(x - 3) + ... + 70/(x - 70). For any integer n, 

n/(x - n) is strictly monotonically decreasing except at x = n, where it is 

discontinuous. Hence f(x) is strictly monotonically decreasing except at x = 1, 

2, ... , 70. For n = any of 1, 2, ... , 70, n/(x - n) tends to plus infinity as x tends 

to n from above, whilst the other terms m/(x - m) remain bounded. Hence f(x) 

tends to plus infinity as x tends to n from above. Similarly, f(x) tends to minus 

infinity as x tends to n from below. Thus in each of the intervals (n, n+1) for n = 

1, ... , 69, f(x) decreases monotonically from plus infinity to minus infinity and 

hence f(x) = 5/4 has a single foot xn. Also f(x) ≥ 5/4 for x in (n, xn] and f(x) < 

5/4 for x in (xn, n+1). If x < 0, then every term is negative and hence f(x) < 0 < 

5/4. Finally, as x tends to infinity, every term tends to zero, so f(x) tends to 
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zero. Hence f(x) decreases monotonically from plus infinity to zero over the 

range [70, infinity]. Hence f(x) = 5/4 has a single root x70 in this range and f(x) 

>= 5/4 for x in (70, x70] and f(x) < 5/4 for x > x70. Thus we have established that 

f(x) ≥ 5/4 for x in any of the disjoint intervals (1, x1], (2, x2], ... , (70, x70] and 

f(x) < 5/4 elsewhere.  

The total length of these intervals is (x1 - 1) + ... + (x70 - 70) = (x1 + ... + x70) - 

(1 + ... + 70). The xi are the roots of the 70th order polynomial obtained from 

1/(x - 1) + 2/(x - 2) + 3/(x - 3) + ... + 70/(x - 70) = 5/4 by multiplying both 

sides by (x - 1) ... (x - 70). The sum of the roots is minus the coefficient of x69 

divided by the coefficient of x70. The coefficient of x70 is simply k, and the 

coefficient of x69 is - (1 + 2 + ... + 70)k - (1 + ... + 70). Hence the sum of the 

roots is (1 + ... + 70)(1 + k)/k and the total length of the intervals is (1 + ... + 

70)/k = 1/2 70·71 4/5 = 28·71 = 1988.  

B4 

The key is to show that AK = AL = AD. We do this indirectly. Take K' on AB and 

L' on AC so that AK' = AL' = AD. Let the perpendicular to AB at K' meet the line 

AD at X. Then the triangles AK'X and ADB are congruent. Let J be the incenter 

of ADB and let r be the in-radius of ADB. Then J lies on the angle bisector of 

angle BAD a distance r from the line AD. Hence it is also the incenter of AK'X. 

Hence JK' bisects the right angle AK'X, so �AK'J = 45o and so J lies on K'L'. An 

exactly similar argument shows that I, the incenter of ADC, also lies on K'L'. 

Hence we can identify K and K', and L and L'.  

The area of AKL is AK·AL/2 = AD2/2, and the area of ABC is BC·AD/2, so we 

wish to show that 2AD ≤ BC. Let M be the midpoint of BC. Then AM is the 

hypoteneuse of AMD, so AM ≥ AD with equality if and only if D = M. Hence 2AD 

≤ 2AM = BC with equality if and only if AB = AC.  

B3  

A little experimentation reveals the following solutions: a, a3 giving a2; a3, a5 - a 

giving a2; and the recursive a1 = 2, b1 = 8, an+1 = bn, bn+1 = 4bn - an giving 4. 

The latter may lead us to: if a2 + b2 = k(ab + 1), then take A = b, B = kb - a, 

and then A2 + B2 = k(AB + 1). Finally, we may notice that this can be used to go 

down as well as up.  

So starting again suppose that a, b, k is a solution in positive integers to a2 + b2 

= k(ab + 1). If a = b, then 2a2 = k(a2 + 1). So a2 must divide k. But that implies 

that a = b = k = 1. Let us assume we do not have this trivial solution, so we may 

take a < b. We also show that a3 > b. For (b/a - 1/a)(ab + 1) = b2 + b/a - b - 

1/a < b2 < a2 + b2. So k > b/a - 1/a. But if a3 < b, then b/a (ab + 1) > b2 + a2, 

so k < b/a. But now b > ak and < ak + 1, which is impossible. It follows that k ≥ 
b/a.  
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Now define A = ka - b, B = a. Then we can easily verify that A, B, k also 

satisfies a2 + b2 = k(ab + 1), and B and k are positive integers. Also a < b 

implies a2 + b2 < ab + b2 < ab + b2 + 1 + b/a = (ab + 1)(1 + b/a), and hence k < 

1 + b/a, so ka - b < a. Finally, since k > b/a, ka - b ≥ 0. If ka - b > 0, then we 

have another smaller solution, in which case we can repeat the process. But we 

cannot have an infinite sequence of decreasing numbers all greater than zero, 

so we must eventually get A = ka - b = 0. But now A2 + B2 = k(AB + 1), so k = 

B2. k was unchanged during the descent, so k is a perfect square.  

A slightly neater variation on this is due to Stan Dolan  

As above take a2 + b2 = k(ab + 1), so a, b, and k are all positive integers. Now 

fixing k take positive integers A, B such that A2 + B2 = k(AB + 1) (*) and 

min(A,B) is as small as possible. Assume B ≤ A. Regarding (*) as a quadratic 

for A, we see that the other root C satisfies A + C = kB, AC = B2 - k. The 

second equation implies that C = B2/A - k/A < B. So C cannot be a positive 

integer (or the solution C, B would have min(C,B) < min(A,B)). But we have 

(A+1)(C+1) = A+C + AC + 1 = B2 + (B-1)k + 1 > 0, so C > -1. C = kB - A is an 

integer, so C = 0. Hence k = B2.  

Note that jumping straight to the minimal without the infinite descent avoids 
some of the verification needed in the infinite descent.  

 

IMO 1992 
A1  

Answer: a = 2, b = 4, c = 8; or a = 3, b = 5, c = 15.  

Let k = 21/3. If a ≥ 5, then k(a - 1) > a. [Check: (k(a - 1)3 - a3 = a3 - 6a2 + 6a - 

2. For a ≥ 6, a3 ≥ 6a2 and 6a > 2, so we only need to check a = 5: 125 - 150 + 

30 - 2 = 3.] We know that c > b > a, so if a ≥ 5, then 2(a - 1)(b - 1)(c - 1) > 

abc > abc - 1. So we must have a = 2, 3 or 4.  

Suppose abc - 1 = n(a - 1)(b - 1)(c - 1). We consider separately the cases n 

= 1, n = 2 and n ≥ 3. If n = 1, then a + b + c = ab + bc + ca. But that is 

impossible, because a, b, c are all greater than 1 and so a < ab, b < bc and c < 

ca.  

Suppose n = 2. Then abc - 1 is even, so all a, b, c are odd. In particular, a = 3. 

So we have 4(b - 1)(c - 1) = 3bc - 1, and hence bc + 5 = 4b + 4c. If b >= 9, 

then bc >= 9c > 4c + 4b. So we must have b = 5 or 7. If b = 5, then we find c = 

15, which gives a solution. If b = 7, then we find c = 23/3 which is not a 

solution.  
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The remaining case is n >= 3. If a = 2, we have n(bc - b - c + 1) = 2bc - 1, or 

(n - 2)bc + (n + 1) = nb + nc. But b ≥ 3, so (n - 2)bc ≥ (3n - 6)c ≥ 2nc for n ≥ 
6, so we must have n = 3, 4 or 5. If n = 3, then bc + 4 = 3b + 3c. If b >= 6, 

then bc ≥ 6c > 3b + 3c, so b = 3, 4 or 5. Checking we find only b = 4 gives a 

solution: a = 2, b = 4, c = 8. If n = 4, then (n - 2)bc, nb and nc are all even, but 

(n + 1) is odd, so there is no solution. If n = 5, then 3bc + 6 = 5b + 5c. b = 3 

gives c = 9/4, which is not a solution. b >= 4 gives 3bc > 10c > 5b + 5c, so 

there are no solutions.  

If a = 3, we have 2n(bc - b - c + 1) = 3bc - 1, or (2n - 3)bc + (2n + 1) = 2nb + 

2nc. But b ≥ 4, so (2n - 3)bc ≥ (8n - 12)c ≥ 4nc > 2nc + 2nb. So there are no 

solutions. Similarly, if a = 4, we have (3n - 4)bc + (3n + 1) = 3nb + 3nc. But b ≥ 
4, so (3n - 4)bc ≥ (12n - 16)c > 6nc > 3nb + 3nc, so there are no solutions.  

A2  

The first step is to establish that f(0) = 0. Putting x = y = 0, and f(0) = t, we get 

f(t) = t2. Also, f(x2+t) = f(x)2, and f(f(x)) = x + t2. We now evaluate f(t2+f(1)2) two 

ways. First, it is f(f(1)2 + f(t)) = t + f(f(1))2 = t + (1 + t2)2 = 1 + t + 2t2 + t4. 

Second, it is f(t2 + f(1 + t)) = 1 + t + f(t)2 = 1 + t + t4. So t = 0, as required.  

It follows immediately that f(f(x)) = x, and f(x2) = f(x)2. Given any y, let z = f(y). 

Then y = f(z), so f(x2 + y) = z + f(x)2 = f(y) + f(x)2. Now given any positive x, 

take z so that x = z2. Then f(x + y) = f(z2 + y) = f(y) + f(z)2 = f(y) + f(z2) = f(x) + 

f(y). Putting y = -x, we get 0 = f(0) = f(x + -x) = f(x) + f(-x). Hence f(-x) = - 

f(x). It follows that f(x + y) = f(x) + f(y) and f(x - y) = f(x) - f(y) hold for all x, y.  

Take any x. Let f(x) = y. If y > x, then let z = y - x. f(z) = f(y - x) = f(y) - f(x) = x 

- y = -z. If y < x, then let z = x - y and f(z) = f(x - y) = f(x) - f(y) = y - x. In 

either case we get some z > 0 with f(z) = -z < 0. But now take w so that w2 = z, 

then f(z) = f(w2) = f(w)2 >= 0. Contradiction. So we must have f(x) = x.  

A3  

Solution  

by Gerhard Wöginger  

We show that for n = 32 we can find a coloring without a monochrome triangle. 

Take two squares R1R2R3R4 and B1B2B3B4. Leave the diagonals of each square 

uncolored, color the remaining edges of R red and the remaining edges of B 

blue. Color blue all the edges from the ninth point X to the red square, and red 

all the edges from X to the blue square. Color RiBj red if i and j have the same 

parity and blue otherwise.  

Clearly X is not the vertex of a monochrome square, because if XY and XZ are 

the same color then, YZ is either uncolored or the opposite color. There is no 
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triangle within the red square or the blue square, and hence no monochrome 

triangle. It remains to consider triangles of the form RiRjBk and BiBjRk. But if i 

and j have the same parity, then RiRj is uncolored (and similarly BiBj), whereas if 

they have opposite parity, then RiBk and RjBk have opposite colors (and similarly 

BiRk and BjRk).  

It remains to show that for n = 33 we can always find a monochrome triangle. 

There are three uncolored edges. Take a point on each of the uncolored edges. 

The edges between the remaining 6 points must all be colored. Take one of 

these, X. At least 3 of the 5 edges to X, say XA, XB, XC must be the same color 

(say red). If AB is also red, then XAB is monochrome. Similarly, for BC and CA. 

But if AB, BC and CA are all blue, then ABC is monochrome.  

B1  

Answer: Let X be the point where C meets L, let O be the center of C, let XO cut 

C gain at Z, and take Y on QR so that M be the midpoint of XY. Let L' be the 

line YZ. The locus is the open ray from Z along L' on the opposite side to Y.  

mainly by Gerhard Wöginger, Technical University, Graz (I filled in a few details)  

Let C' be the circle on the other side of QR to C which also touches the 

segment QR and the lines PQ and QR. Let C' touch QR at Y'. If we take an 

expansion (technically, homothecy) center P, factor PY'/PZ, then C goes to C', 

the tangent to C at Z goes to the line QR, and hence Z goes to Y'. But it is easy 

to show that QX = RY'.  

We focus on the QORO'. Evidently X,Y' are the feet of the perpendiculars from 

O, O' respectively to QR. Also, OQO' = ORO' = 90. So QY'O' and OXQ are 

similar, and hence QY'/Y'O' = OX/XQ. Also RXO and O'Y'R are similar, so 

RX/XO = O'Y'/Y'R. Hence QY'·XQ = OX·O'Y' = RX·Y'R. Hence QX/RX = QX/(QR 

- QX) = RY'/(QR - RY') = RY'/QY'. Hence QX = RY'.  

But QX = RY by construction (M is the midpoint of XY and QR), so Y = Y'. 

Hence P lies on the open ray as claimed. Conversely, if we take P on this ray, 

then by the same argument QX = RY. But M is the midpoint of XY, so M must 

also be the midpoint of QR, so the locus is the entire (open) ray.  

Gerhard only found this after Theo Koupelis, University of Wisconsin, Marathon 
had already supplied the following analytic solution.  

Take Cartesian coordinates with origin X, so that M is (a, 0) and O is (0, R). Let 

R be the point (b, 0) (we take a, b >= 0). Then Q is the point (2a - b, 0), and Y 

is (2a, 0). Let angle XRO be θ. Then tan θ = R/b and angle PRX = 2θ, so tan 

PRX = 2 tan θ/( 1 - tan2θ) = 2Rb/(b2 - R2). Similarly, tan PQX = 2R(b - 2a)/( (b 

- 2a)2 - R2).  
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If P has coordinates (A, B), then B/(b - A) = tan PRX, and B/(b - 2a + x) = tan 

PQX. So we have two simultaneous equations for A and B. Solving, and 

simplifying slightly, we find A = -2aR2/(b2 - 2ab - R2), B = 2b(b - 2a)R/(b2 - 

2ab - R2). (*)  

We may now check that B/(2a - A) = R/a, so P lies on YZ as claimed. So we 

have shown that the locus is a subset of the line YZ. But since b2 - 2ab - R2 

maps the open interval (a + √(a2 + R2), ∞) onto the open interval (0, ∞), (*) 

shows that we can obtain any value A in the open interval (-∞,0) by a suitable 

choice of b, and hence any point P on the ray (except its endpoint Z) by a 

suitable choice of R.  

B2  

by Gerhard Wöginger  

Induction on the number of different z-coordinates in S.  

For 1, it is sufficient to note that S = Sz and |S| ≤ |Sx| |Sy|  (at most |Sx| 

points of S project onto each of the points of Sy).  

In the general case, take a horizontal (constant z) plane dividing S into two 

non-empty parts T and U. Clearly, |S| = |T| + |U|, |Sx| = |Tx| + |Ux|, and 

|Sy| = |Ty| + |Uy|.  

By induction, |S| = |T| + |U| ≤ (|Tx| |Ty| |Tz|)1/2 + (|Ux| |Uy| |Uz|)1/2. But 

|Tz|, |Uz| ≤ |Sz|, and for any positive a, b, c, d we have (a b)1/2 + (c d)1/2 ≤ ( (a 

+ c) (b + d) )1/2 (square!).  

Hence |S| ≤ |Sz|
1/2( ( |Tx| + |Ux| ) ( |Ty| + |Uy| ) )

1/2 = ( |Sx| |Sy| |Sz| ) 
1/2.    

B3  

 (a)  Let N = n2. Suppose we could express N as a sum of N - 13 squares. Let 

the number of 4s be a, the number of 9s be b and so on. Then we have 13 = 3a 

+ 8b + 15c + ... . Hence c, d, ... must all be zero. But neither 13 nor 8 is a 

multiple of 3, so there are no solutions. Hence S(n) ≤ N - 14.  

A little experimentation shows that the problem is getting started. Most squares 

cannot be expressed as a sum of two squares. For N = 132 = 169, we find: 169 

= 9 + 4 + 4 + 152 1s, a sum of 155 = N - 14 squares. By grouping four 1s into 

a 4 repeatedly, we obtain all multiples of 3 plus 2 down to 41 (169 = 9 + 40 4s). 

Then grouping four 4s into a 16 gives us 38, 35, ... , 11 (169 = 10 16s + 9). 

Grouping four 16s into a 64 gives us 8 and 5. We obtain the last number 

congruent to 2 mod 3 by the decomposition: 169 = 122 + 52.  

For the numbers congruent to 1 mod 3, we start with N - 15 = 154 squares: 169 

= 5 4s + 149 1s. Grouping as before gives us all 3m + 1 down to 7: 169 = 64 + 

64 + 16 + 16 + 4 + 4 + 1. We may use 169 = 102 + 82 + 22 + 12 for 4.  
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For multiples of 3, we start with N - 16 = 153 squares: 169 = 9 + 9 + 151 1s. 

Grouping as before gives us all multiples of 3 down to 9: 169 = 64 + 64 + 16 + 

9 + 9 + 4 + 1 + 1 + 1. Finally, we may take 169 = 122 + 42 + 32 for 3 and split 

the 42 to get 169 = 122 + 32 + 22 + 22 + 22 + 22 for 6. That completes the 

demonstration that we can write 132 as a sum of k positive squares for all k <= 

S(13) = 132 - 14.  

We now show how to use the expressions for 132 to derive further N. For any N, 

the grouping technique gives us the high k. Simply grouping 1s into 4s takes us 

down: from 9 + 4 + 4 + (N-17) 1s to (N-14)/4 + 6 < N/2 or below; from 4 + 4 + 

4 + 4 + 4 + (N-20) 1s to (N-23)/4 + 8 < N/2 or below; from 9 + 9 + (N-18) 1s 

to (N-21)/4 + 5 < N/2 or below. So we can certainly get all k in the range (N/2 

to N-14) by this approach. Now suppose that we already have a complete set 

of expressions for N1 and for N2 (where we may have N1 = N2). Consider N3 = 

N1N2. Writing N3 = N1( an expression for N2 as a sum of k squares) gives N3 as a 

sum of 1 thru k2 squares, where k2 = N2 - 14 squares (since N1 is a square). 

Now express N1 as a sum of two squares: n1
2 + n2

2. We have N3 = n1
2(a sum of 

k2 squares) + n2
2(a sum of k squares). This gives N3 as a sum of k2 + 1 thru 2k2 

squares. Continuing in this way gives N3 as a sum of 1 thru k1k2 squares. But ki 

= Ni - 14 > 2/3 Ni, so k1k2 > N3/2. So when combined with the top down 

grouping we get a complete set of expressions for N3.  

This shows that there are infinitely many squares N with a complete set of 

expressions, for example we may take N = the squares of 13, 132, 133, ... .  

 

IMO 1993 
A1  

Suppose f(x) = (xr + ar-1x
r-1 + ... + a1x ± 3)(xs + bs-1x

s-1 + ... + b1x ± 1). We 

show that all the a's are divisible by 3 and use that to establish a contradiction.  

First, r and s must be greater than 1. For if r = 1, then ± 3 is a root, so if n is 

even, we would have 0 = 3n ± 5·3n-1 + 3 = 3n-1( 3 ± 5) + 3, which is false since 

3 ± 5 = 8 or -2. Similarly if n is odd we would have 0 = 3n-1(±3 + 5) + 3, which 

is false since ±3 + 5 = 8 or 2. If s = 1, then ±1 is a root and we obtain a 

contradiction in the same way.  

So r ≤ n - 2, and hence the coefficients of x, x2, ... , xr are all zero. Since the 

coefficient of x is zero, we have: a1 ± 3b1 = 0, so a1 is divisible by 3. We can 

now proceed by induction. Assume a1, ... , at are all divisible by 3. Then 

consider the coefficient of xt+1. If s-1 ≥ t+1, then at+1 = linear combination of a1, 

... , at ± 3bt+1. If s-1 < t+1, then at+1 = linear combination of some or all of a1, 

... , at. Either way, at+1 is divisible by 3. So considering the coefficients of x, x2, 

... , xr-1 gives us that all the a's are multiples of 3. Now consider the coefficient 
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of xr, which is also zero. It is a sum of terms which are multiples of 3 plus ±1, 

so it is not zero. Contradiction. Hence the factorization is not possible.  

A2 

By Glen Ong, Oracle Corporation  

Take B' so that CB = CB', �BCB' = 90o and B' is on the opposite side of BC to 

A. It is easy to check that ADB, ACB' are similar and DAC, BAB' are similar. 

Hence AB/BD = AB'/B'C and CD/AC = BB'/AB'. It follows that the ratio given is 

BB'/B'C which is √2.  

Take XD the tangent to the circumcircle of ADC at D, so that XD is in the �ADB. 

Similarly, take YD the tangent to the circumcircle BDC at D. Then �ADX = 

�ACD, �BDY = �BCD, so �ADX + �BDY = �ACB and hence �XDY = �ADB - 

(�ADX + �BDY) = �ADB - �ACB = 90o. In other words the tangents to the 

circumcircles at D are perpendicular. Hence, by symmetry (reflecting in the line 

of centers) the tangents at C are perpendicular.  

Theo Koupelis, University of Wisconsin, Marathon   provided a similar solution 

(about 10 minutes later!) taking the point B' so that �BDB' = 90o, BD = B'D and 

�B'DA = �ACB. DAC, B'AB are similar; and ABC, AB'D are similar.  

Marcin Mazur, University of Illinois at Urbana-Champaign   provided the first 

solution I received (about 10 minutes earlier!) using the generalized Ptolemy's 

equality (as opposed to the easier equality), but I do not know of a slick proof 

of this, so I prefer the proof above.  

A3  

We show first that the game can end with only one piece if n is not a multiple of 

3. Note first that the result is true for n = 2 or 4.  

n=2  

 

X X   . . X   . . X   . . .  

 

X X   X X     . . X   . . . 

 

                          X 

 

n = 4  

 

              X         X         X         X         X 

 

X X X X   X X . X   X X . X   . . X X   . . X X   . X . . 
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X X X X   X X . X   . . X X   . . X X   X . X X   X . X X 

 

X X X X   X X X X   X X X X   X X X X   . X X X   . X X X 

 

X X X X   X X X X   X X X X   X X X X   . X X X   . X X X 

 

 

 

    X         X         X 

 

. X . .   . X . .   . X X .   . X . .   . X . .   . . . . 

 

X X . .   . . X .   . . . .   . . X .   . X X .   . . X . 

 

. X X X   . X X X   . X . X   . X . X   . . . X   . X . X 

 

. X X X   . X X X   . X X X   . X X X   . . X X   . . X X 

 

 

 

. . . .   . . . .   . . . .   . . . . 

 

. . X X   . X . .   . . . .   . . . . 

 

. X . .   . X . .   . . . .   . . . . 

 

. . X .   . . X .   . X X .   . . . X 

 

The key technique is the following three moves which can be used to wipe out 

three adjacent pieces on the border provided there are pieces behind them:  

 

 X X X     X X .     X X .     X X X 

 

 X X X     X X .     . . X     . . . 

 

               X         X 

 

We can use this technique to reduce (r + 3) x s rectangle to an r x s rectangle. 

There is a slight wrinkle for the last two rows of three:  

 

 X X X X     X X . X     . . X X     . . X X     . . . X     . . . X 

 

 X X X X     X X . X     . . X X     . . X X     . . . X     . . . X 

 

 . . . X     . . X X     . . X X     . X . .     . X X .     . . . X 
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Thus we can reduce a square side 3n+2 to a 2 x (3n+2) rectangle. We now 

show how to wipe out the rectangle. First, we change the 2 x 2 rectangle at one 

end into a single piece alongside the (now) 2 x 3n rectangle:  

 

  X X    . .     . . 

 

  X X    . .     . . 

 

         X X        X    

 

Then we use the following technique to shorten the rectangle by 3:  

 

 X X X     X . X     X . X     . . .     . . . 

 

 X X X     X . X     X . X     . . .     . . . 

 

 X         X X     X .       X X . X         . X 

 

That completes the case of the square side 3n+2. For the square side 3n+1 we 

can use the technique for removing 3 x r rectangles to reduce it to a 4 x 4 

square and then use the technique above for the 4 x 4 rectangle.  

Finally, we use a parity argument to show that if n is a multiple of 3, then the 

square side n cannot be reduced to a single piece. Color the board with 3 

colors, red, white and blue:  

 

 R W B R W B R W B ... 

 

 W B R W B R W B R ... 

 

 B R W B R W B R W ... 

 

 R W B R W B R W B ... 

 

 ... 

 

Let suppose that the single piece is on a red square. Let A be the number of 

moves onto a red square, B the number of moves onto a white square and C 

the number of moves onto a blue square. A move onto a red square increases 

the number of pieces on red squares by 1, reduces the number of pieces on 

white squares by 1, and reduces the number of pieces on blue squares by 1. 

Let n = 3m. Then there are initially m pieces on red squares, m on white and m 

on blue. Thus we have:  
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  - A + B + C = m-1;   A - B + C = m;   A + B - C = m.  

Solving, we get A = m, B = m - 1/2, C = m - 1/2. But the number of moves of 

each type must be integral, so it is not possible to reduce the number of pieces 

to one if n is a multiple of 3.  

B1  

The length of an altitude is twice the area divided by the length of the 

corresponding side. Suppose that BC is the longest side of the triangle ABC. 

Then m(ABC) = area ABC/BC. [If A = B = C, so that BC = 0, then the result is 

trivially true.]  

Consider first the case of X inside ABC. Then area ABC = area ABX + area AXC 

+ area XBC, so m(ABC)/2 = area ABX/BC + area AXC/BC + area XBC/BC. We 

now claim that the longest side of ABX is at most BC, and similarly for AXC and 

XBC. It then follows at once that area ABX/BC ≤ area ABX/longest side of ABX 

= m(ABX)/2 and the result follows (for points X inside ABC).  

The claim follows from the following lemma. If Y lies between D and E, then FY 

is less than the greater than FD and FE. Proof: let H be the foot of the 

perpendicular from F to DE. One of D and E must lie on the opposite side of Y 

to H. Suppose it is D. Then FD = FH/cos HFD > FH/cos HFY = FY. Returning to 

ABCX, let CX meet AB at Y. Consider the three sides of ABX. By definition AB ≤ 
BC. By the lemma AX is smaller than the larger of AC and AY, both of which do 

not exceed BC. Hence AX ≤ BC. Similarly BX ≤ BC.  

It remains to consider X outside ABC. Let AX meet AC at O. We show that the 

sum of the smallest altitudes of ABY and BCY is at least the sum of the smallest 

altitudes of ABO and ACO. The result then follows, since we already have the 

result for X = O. The altitude from A in ABX is the same as the altitude from A in 

ABO. The altitude from X in ABX is clearly longer than the altitude from O in 

ABO (let the altitudes meet the line AB at Q and R respectively, then triangles 

BOR and BXQ are similar, so XQ = OR·BX/BO > OR). Finally, let k be the line 

through A parallel to BX, then the altitude from B in ABX either crosses k before 

it meets AX, or crosses AC before it crosses AX. If the former, then it is longer 

than the perpendicular from B to k, which equals the altitude from A to BO. If 

the latter, then it is longer than the altitude from B to AO. Thus each of the 

altitudes in ABX is longer than an altitude in ABO, so m(ABX) > m(ABO).  

B2  

Yes: f(n) = [g*n + ½], where g = (1 + √5)/2 = 1.618 ... .  

This simple and elegant solution is due to Suengchur Pyun  
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Let g(n) = [g*n + ½]. Obviously g(1) = 2. Also g(n+1) = g(n) + 1 or g(n) + 2, so 

certainly g(n+1) > g(n).  

Consider d(n) = g* [g*n + ½] + ½ - ( [g*n + ½] + n). We show that it is 

between 0 and 1. It follows immediately that g(g(n)) = g(n) + n, as required.  

Certainly, [g*n + ½] > g*n - ½, so d(n) > 1 - g/2 > 0 (the n term has 

coefficient g2 - g - 1 which is zero). Similarly, [g*n + ½] ≤ g*n + ½, so d(n) ≤ 
g/2 < 1, which completes the proof.  

I originally put up the much clumsier result following:  

Take n = brbr-1 ... b0 in the Fibonacci base. Then f(n) = brbr-1 ... b00. This 

satisfies the required conditions.  

Let u0 = 1, u1 = 2, ... , un=un-1+un-2, ... be the Fibonacci numbers. We say n = 

brbr-1 ... b0 in the Fibonacci base if br = 1, every other bi = 0 or 1, no two 

adjacent bi are non-zero, and n = brur + ... + b0u0. For example, 28 = 1001010 

because 28 = 21 + 5 + 2.  

We have to show that every n has a unique expression of this type. We show 

first by induction that it has at least one expression of this type. Clearly that is 

true for n = 1. Take ur to be the largest Fibonacci number ≤ n. Then by 

induction we have an expression for n - ur. The leading term cannot be ui for i > 

r - 2, for then we would have n >= ur + ur-1 = ur+1. So adding ur to the 

expression for n - ur gives us an expression of the required type for n, which 

completes the induction.  

We show that ur + ur-2 + ur-4 + ... = ur+1 - 1. Again we use induction. It is true 

for r = 1 and 2. Suppose it is true for r - 1, then ur+1 + ur-1 + ... = ur+2 - ur + ur-1 

+ ur-3 + ... = ur+2 - ur + ur - 1 = ur+2 - 1. So it is true for r + 1. Hence it is true 

for all r. Now we can prove that the expression for n is unique. It is for n = 1. So 

assume it is for all numbers < n, but that the expression for n is not unique, so 

that we have n = ur + more terms = us + more terms. If r = s, then the 

expression for n - ur is not unique. Contradiction. So suppose r > s. But now 

the second expression is at most us+1 - 1 which is less than ur. So the 

expression for n must be unique and the induction is complete.  

It remains to show that f satisfies the required conditions. Evidently if n = 1 = 

u0, then f(n) = u1 = 2, as required. If n = ua1 + ... + uar, then f(n) = ua1+1 + ... + 

uar+1 and f(f(n)) = ua1+2 + ... + uar+2. So f(n) + n = (ua1 + ua1+1) + ... + (uar + uar+1) 

= f(f(n)).  

B3 

 (a)  The process cannot terminate, because before the last move a single lamp 

would have been on. But the last move could not have turned it off, because 
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the adjacent lamp was off. There are only finitely many states (each lamp is on 

or off and the next move can be at one of finitely many lamps), hence the 

process must repeat. The outcome of each step is uniquely determined by the 

state, so either the process moves around a single large loop, or there is an 

initial sequence of steps as far as state k and then the process goes around a 

loop back to k. However, the latter is not possible because then state k would 

have had two different precursors. But a state has only one possible precursor 

which can be found by toggling the lamp at the current position if the previous 

lamp is on and then moving the position back one. Hence the process must 

move around a single large loop, and hence it must return to the initial state.  

(b)  Represent a lamp by X when on, by - when not. For 4 lamps the starting 

situation and the situation after 4, 8, 12, 16 steps is as follows:  

 

X X X X 

 

- X - X 

 

X - - X 

 

- - - X 

 

X X X - 

 

On its first move lamp n-2 is switched off and then remains off until each lamp 

has had n-1 moves. Hence for each of its first n-1 moves lamp n-1 is not 

toggled and it retains its initial state. After each lamp has had n-1 moves, all of 

lamps 1 to n-2 are off. Finally over the next n-1 moves, lamps 1 to n-2 are 

turned on, so that all the lamps are on. We show by induction on k that these 

statements are all true for n = 2k. By inspection, they are true for k = 2. So 

suppose they are true for k and consider 2n = 2k+1 lamps. For the first n-1 

moves of each lamp the n left-hand and the n right-hand lamps are effectively 

insulated. Lamps n-1 and 2n-1 remain on. Lamp 2n-1 being on means that 

lamps 0 to n-2 are in just the same situation that they would be with a set of 

only n lamps. Similarly, lamp n-1 being on means that lamps n to 2n-2 are in 

the same situation that they would be with a set of only n lamps. Hence after 

each lamp has had n-1 moves, all the lamps are off except for n-1 and 2n-1. 

In the next n moves lamps 1 to n-2 are turned on, lamp n-1 is turned off, lamps 

n to 2n-2 remain off, and lamp 2n-1 remains on. For the next n-1 moves for 

each lamp, lamp n-1 is not toggled, so it remains off. Hence all of n to 2n-2 

also remain off and 2n-1 remains on. Lamps 0 to n-2 go through the same 

sequence as for a set of n lamps. Hence after these n-1 moves for each lamp, 

all the lamps are off, except for 2n-1. Finally, over the next 2n-1 moves, lamps 

0 to 2n-2 are turned on. This completes the induction. Counting moves, we see 

that there are n-1 sets of n moves, followed by n-1 moves, a total of n2 - 1.  
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(c)  We show by induction on the number of moves that for n = 2k+ 1 lamps 

after each lamp has had m moves, for i = 0, 1, ... , 2k - 2, lamp i+2 is in the 

same state as lamp i is after each lamp has had m moves in a set of n - 1 = 2k 

lamps (we refer to this as lamp i in the reduced case). Lamp 0 is off and lamp 1 

is on. It is easy to see that this is true for m = 1 (in both cases odd numbered 

lamps are on and even numbered lamps are off). Suppose it is true for m. Lamp 

2 has the same state as lamp 0 in the reduced case and both toggle since their 

predecessor lamps are on. Hence lamps 3 to n - 1 behave the same as lamps 1 

to n - 3 in the reduced case. That means that lamp n - 1 remains off. Hence 

lamp 0 does not toggle on its m+1th move and remains off. Hence lamp 1 does 

not toggle on its m+1th move and remains on. The induction stops working 

when lamp n - 2 toggles on its nth move in the reduced case, but it works up to 

and including m = n - 2. So after n - 2 moves for each lamp all lamps are off 

except lamp 1. In the next two moves nothing happens, then in the following n 

- 1 moves lamps 2 to n - 1 and lamp 0 are turned on. So all the lamps are on 

after a total of (n - 2)n + n + 1 = n2 + n + 1 moves.  

 

IMO 1994 
A1  

Take a1 < a2 < ... < am. Take k ≤ (m+1)/2. We show that ak + am-k+1 ≥ n + 1. If 

not, then the k distinct numbers a1 + am-k+1, a2 + am-k+1, ... , ak + am-k+1 are all ≤ 
n and hence equal to some ai. But they are all greater than am-k+1, so each i 

satisfies m-k+2 ≤ i ≤ m, which is impossible since there are only k-1 available 

numbers in the range.  

A2  

Assume OQ is perpendicular to EF. Then �EBO = �EQO = 90o, so EBOQ is 

cyclic. Hence �OEQ = �OBQ. Also �OQF = �OCF = 90o, so OQCF is cyclic. 

Hence �OFQ = �OCQ. But �OCQ = �OBQ since ABC is isosceles. Hence 

�OEQ = �OFQ, so OE = OF, so triangles OEQ and OFQ are congruent and QE 

= QF.  

Assume QE = QF. If OQ is not perpendicular to EF, then take E'F' through Q 

perpendicular to OQ with E' on AB and F' on AC. Then QE' = QF', so triangles 

QEE' and QFF' are congruent. Hence �QEE' = �QFF'. So CA and AB make the 

same angles with EF and hence are parallel. Contradiction. So OQ is 

perpendicular to EF.  

A3  

2, 4, ... , n(n-1)/2 + 1, ... .  

To get a feel, we calculate the first few values of f explicitly:  

134



f(2) = 0, f(3) = 0  

f(4) = f(5) = 1, [7 = 111]  

f(6) = 2, [7 = 111, 11 = 1011]  

f(7) = f(8) = f(9) = 3 [11 = 1011, 13 = 1101, 14 = 1110]  

f(10) = 4 [11, 13, 14, 19 = 10011]  

f(11) = f(12) = 5 [13, 14, 19, 21 = 10101, 22 = 10110]  

f(13) = 6 [14, 19, 21, 22, 25 = 11001, 26 = 11010]  

We show that f(k+1) = f(k) or f(k) + 1. The set for k+1 has the additional 

elements 2k+1 and 2k+2 and it loses the element k+1. But the binary expression 

for 2k+2 is the same as that for k+1 with the addition of a zero at the end, so 

2k+2 and k+1 have the same number of 1s. So if 2k+1 has three 1s, then f(k+1) 

= f(k) + 1, otherwise f(k+1) = f(k). Now clearly an infinite number of numbers 

2k+1 have three 1s, (all numbers 2r + 2s + 1 for r > s > 0). So f(k) increases 

without limit, and since it only moves up in increments of 1, it never skips a 

number. In other words, given any positive integer m we can find k so that f(k) = 

m.  

From the analysis in the last paragraph we can only have a single k with f(k) = 

m if both 2k-1 and 2k+1 have three 1s, or in other words if both k-1 and k have 

two 1s. Evidently this happens when k-1 has the form 2n + 1. This determines 

the k, namely 2n + 2, but we need to determine the corresponding m = f(k). It is 

the number of elements of {2n+3, 2n+4, ... , 2n+1+4} which have three 1s. 

Elements with three 1s are either 2n+2r+2s with 0 ≤ r < s < n, or 2n+1+3. So there 

are m= n(n-1)/2 + 1 of them. As a check, for n = 2, we have k = 22+2 = 6, m = 

2, and for n = 3, we have k = 23+2 = 10, m = 4, which agrees with the f(6) = 2, 

f(10) = 4 found earlier.    

B1  

Answer  

(1, 2), (1, 3), (2, 1), (2, 2), (2, 5), (3, 1), (3, 5), (5, 2), (5, 3).  

We start by checking small values of n. n = 1 gives n3 + 1 = 2, so m = 2 or 3, 

giving the solutions (2, 1) and (3, 1). Similarly, n = 2 gives n3 + 1 = 9, so 2m-1 

= 1, 3 or 9, giving the solutions (1, 2), (2, 2), (5, 2). Similarly, n = 3 gives n3 + 1 

= 28, so 3m - 1 = 2, 14, giving the solutions (1, 3), (5, 3). So we assume 

hereafter that n > 3.  

Let n3 + 1 = (mn - 1)h. Then we must have h = -1 (mod n). Put h = kn - 1. 

Then n3 + 1 = mkn2 - (m + k)n + 1. Hence n2 = mkn - (m + k). (*)   Hence n 

divides m + k. If m + k ≥ 3n, then since n > 3 we have at least one of m, k ≥ n + 

2. But then (mn - 1)(kn - 1) ≥ (n2 + 2n - 1)(n - 1) = n3 + n2 - 3n + 1 = (n3 + 1) 

+ n(n - 3) > n3 + 1. So we must have m + k = n or 2n.  
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Consider first m + k = n. We may take m ≥ k (provided that we remember that if 

m is a solution, then so is n - m). So (*) gives n = m(n - m) - 1. Clearly m = n 

- 1 is not a solution. If m = n - 2, then n = 2(n - 2) - 1, so n = 5. This gives 

the two solutions (m, n) = (2, 5) and (3, 5). If m < n - 2 then n - m ≥ 3 and so 

m(n - m) - 1 ≥ 3m - 1 ≥ 3n/2 - 1 > n for n > 3.  

Finally, take m + k = 2n. So (*) gives n + 2 = m(2n - m). Again we may take m ≥ 
k. m = 2n - 1 is not a solution (we are assuming n > 3). So 2n - m ≥ 2, and 

hence m(2n - m) ≥ 2m ≥ 2n > n + 2.  

B2  

x.  

Answer  

f(x) = -x/(x+1).  

Solution  

Suppose f(a) = a. Then putting x = y = a in the relation given, we get f(b) = b, 

where b = 2a + a2. If -1 < a < 0, then -1 < b < a. But f(a)/a = f(b)/b. 

Contradiction. Similarly, if a > 0, then b > a, but f(a)/a = f(b)/b. Contradiction. 

So we must have a = 0.  

But putting x = y in the relation given we get f(k) = k for k = x + f(x) + xf(x). 

Hence for any x we have x + f(x) + xf(x) = 0 and hence f(x) = -x/(x+1).  

Finally, it is straightforward to check that f(x) = -x(x+1) satisfies the two 

conditions.  

Thanks to Gerhard Woeginger for pointing out the error in the original solution 
and supplying this solution.  

B3  

Let the primes be p1 < p2 < p3 < ... . Let A consists of all products of n distinct 

primes such that the smallest is greater than pn. For example: all primes except 

2 are in A; 21 is not in A because it is a product of two distinct primes and the 

smallest is greater than 3. Now let S = {pi1, pi2, ... } be any infinite set of 

primes. Assume that pi1 < pi2 < ... . Let n = i1. Then pi1pi2 ... pin is not in A 

because it is a product of n distinct primes, but the smallest is not greater than 

pn. But pi2pi3 ... pin+1 is in A, because it is a product of n distinct primes and the 

smallest is greater than pn. But both numbers are products of n distinct 

elements of S.  
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IMO 1995 
A1  

Let DN meet XY at Q. Angle QDZ = 90o - angle NBD = angle BPZ. So triangles 

QDZ and BPZ are similar. Hence QZ/DZ = BZ/PZ, or QZ = BZ·DZ/PZ. Let AM 

meet XY at Q'. Then the same argument shows that Q'Z = AZ·CZ/PZ. But BZ·DZ 

= XZ·YZ = AZ·CZ, so QZ = Q'Z. Hence Q and Q' coincide.  

A2  

Put a = 1/x, b = 1/y, c = 1/z. Then 1/(a3(b+c)) = x3yz/(y+z) = x2/(y+z). Let the 

expression given be E. Then by Cauchy's inequality we have (y+z + z+x + x+y)E 

≥ (x + y + z)2, so E ≥ (x + y + z)/2. But applying the arithmetic/geometric mean 

result to x, y, z gives (x + y + z) ≥ 3. Hence result.  

Thanks to Gerhard Woeginger for pointing out that the original solution was 
wrong.  

A3  

Answer  

n = 4.  

Solution  

The first point to notice is that if no arrangement is possible for n, then no 

arrangement is possible for any higher integer. Clearly the four points of a 

square work for n = 4, so we focus on n = 5.  

If the 5 points form a convex pentagon, then considering the quadrilateral 

A1A2A3A4 as made up of two triangles in two ways, we have that r1 + r3 = r2 + r4. 

Similarly, A5A1A2A3 gives r1 + r3 = r2 + r5, so r4 = r5.  

We show that we cannot have two r's equal (whether or not the 4 points form a 

convex pentagon). For suppose r4 = r5. Then A1A2A4 and A1A2A5 have equal 

area. If A4 and A5 are on the same side of the line A1A2, then since they must be 

equal distances from it, A4A5 is parallel to A1A2. If they are on opposite sides, 

then the midpoint of A4A5 must lie on A1A2. The same argument can be applied 

to A1 and A3, and to A2 and A3. But we cannot have two of A1A2, A1A3 and A2A3 

parallel to A4A5, because then A1, A2 and A3 would be collinear. We also cannot 

have the midpoint of A4A5 lying on two of A1A2, A1A3 and A2A3 for the same 

reason. So we have established a contradiction. hence no two of the r's can be 

equal. In particular, this shows that the 5 points cannot form a convex 

pentagon.  
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Suppose the convex hull is a quadrilateral. Without loss of generality, we may 

take it to be A1A2A3A4. A5 must lie inside one of A1A2A4 and A2A3A4. Again 

without loss of generality we may take it to be the latter, so that A1A2A5A4 is also 

a convex quadrilateral. Then r2 + r4 = r1 + r3 and also = r1 + r5. So r3 = r5, giving 

a contradiction as before.  

The final case is the convex hull a triangle, which we may suppose to be 

A1A2A3. Each of the other two points divides its area into three triangles, so we 

have: (r1 + r2 + r4) + (r2 + r3 + r4) + (r3 + r1 + r4) = (r1 + r2 + r5) + (r2 + r3 + r5) + 

(r3 + r1 + r5) and hence r4 = r5, giving a contradiction.  

So the arrangement is not possible for 5 and hence not for any n > 5.  

B1  

Answer  

2997.  

Solution  

The relation given is a quadratic in xi, so it has two solutions, and by inspection 

these are xi = 1/xi-1 and xi-1/2. For an even number of moves we can start with 

an arbitrary x0 and get back to it. Use n-1 halvings, then take the inverse, that 

gets to 2n-1/x0 after n moves. Repeating brings you back to x0 after 2n moves. 

However, 1995 is odd!  

The sequence given above brings us back to x0 after n moves, provided that x0 

= 2(n-1)/2. We show that this is the largest possible x0. Suppose we have a 

halvings followed by an inverse followed by b halvings followed by an inverse. 

Then if the number of inverses is odd we end up with 2a-b+c- .../x0, and if it is 

even we end up with x0/2
a-b+c- .... In the first case, since the final number is x0 

we must have x0 = 2(a-b+-...)/2. All the a, b, ... are non-negative and sum to the 

number of moves less the number of inverses, so we clearly maximise x0 by 

taking a single inverse and a = n-1. In the second case, we must have 2a-b+c- ... 

= 1 and hence a - b + c - ... = 0. But that implies that a + b + c + ... is even 

and hence the total number of moves is even, which it is not. So we must have 

an odd number of inverses and the maximum value of x0 is 2(n-1)/2.  

B2  

BCD is an equilateral triangle and AEF is an equilateral triangle. The presence of 

equilateral triangles and quadrilaterals suggests using Ptolemy's inequality. [If 

this is unfamiliar, see ASU 61/6 solution.]. From CBGD, we get CG·BD ≤ BG·CD 

+ GD·CB, so CG ≤ BG + GD. Similarly from HAFE we get HF ≤ HA + HE. Also 

CF is shorter than the indirect path C to G to H to F, so CF ≤ CG + GH + HF. 

But we do not get quite what we want.  
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However, a slight modification of the argument does work. BAED is symmetrical 

about BE (because BA = BD and EA = ED). So we may take C' the reflection of 

C in the line BE and F' the reflection of F. Now C'AB and F'ED are still 

equilateral, so the same argument gives C'G ≥ AG + GB and HF' ≤ DH + HE. So 

CF = C'F' ≤ C'G + GH + HF' ≤ AG + GB + GH + DH + HE.  

B3  

Answer  

2 + (2pCp - 2)/p, where 2pCp is the binomial coefficient (2p)!/(p!p!).  

Solution  

Let A be a subset other than {1, 2, ... , p} and {p+1, p+2, ... , 2p}. Consider 

the elements of A in {1, 2, ... , p}. The number r satisfies 0 < r < p. We can 

change these elements to another set of r elements of {1, 2, ... , p} by adding 

1 to each element (and reducing mod p if necessary). We can repeat this 

process and get p sets in all. For example, if p = 7 and the original subset of 

{1, 2, ... , 7} was {3 , 5}, we get:  

  {3 , 5}, {4, 6}, {5, 7}, {6, 1}, {7, 2}, {1, 3}, {2, 4}.  

The sum of the elements in the set is increased by r each time. So, since p is 

prime, the sums must form a complete set of residues mod p. In particular, they 

must all be distinct and hence all the subsets must be different.  

Now consider the sets A which have a given intersection with {p+1, ... , n}. 

Suppose the elements in this intersection sum to k mod p. The sets can be 

partitioned into groups of p by the process described above, so that exactly 

one member of each group will have the sum -k mod p for its elements in {1, 2, 

... , p}. In other words, exactly one member of each group will have the sum of 

all its elements divisible by p.  

There are 2pCp subsets of {1, 2, ... , 2p} of size p. Excluding {1, 2, ... , p} and 

{p+1, ... , 2p} leaves (2pCp - 2). We have just shown that (2pCp - 2)/p of 

these have sum divisible by p. The two excluded subsets also have sum 

divisible by p, so there are 2 + (2pCp - 2)/p subsets in all having sum divisible 

by p.  

IMO 1996 
A1  

Answer  

No.  
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Solution  

(a)  Suppose the move is a units in one direction and b in the orthogonal 

direction. So a2 + b2 = r. If r is divisible by 2, then a and b are both even or both 

odd. But that means that we can only access the black squares or the white 

squares (assuming the rectangle is colored like a chessboard). The two corners 

are of opposite color, so the task cannot be done. All squares are congruent to 

0 or 1 mod 3, so if r is divisible by 3, then a and b must both be multiples of 3. 

That means that if the starting square has coordinates (0,0), we can only move 

to squares of the form (3m,3n). The required destination is (19,0) which is not 

of this form, so the task cannot be done.  

(b)  If r = 73, then we must have a = 8, b = 3 (or vice versa). There are 4 types 

of move:  

      A: (x,y) to (x+8,y+3)  

      B: (x,y) to (x+3,y+8)  

      C: (x,y) to (x+8,y-3)  

      D: (x,y) to (x+3,y-8)  

We regard (x,y) to (x-8,y-3) as a negative move of type A, and so on. Then if 

we have a moves of type A, b of type B and so on, then we require:  

    8(a + c) + 3(b + d) = 19; 3(a - c) + 8(b - d) = 0.  

A simple solution is a = 5, b = -1, c = -3, d = 2, so we start by looking for 

solutions of this type. After some fiddling we find:  

(0,0) to (8,3) to (16,6) to (8,9) to (11,1) to (19,4) to (11,7) to (19,10) to (16,2) 

to (8,5) to (16,8) to (19,0).  

(c)  If r = 97, then we must have a = 9, b = 4. As before, assume we start at 

(0,0). A good deal of fiddling around fails to find a solution, so we look for 

reasons why one is impossible. Call moves which change y by 4 "toggle" 

moves. Consider the central strip y = 4, 5, 6 or 7. Toggle moves must toggle us 

in and out of the strip. Non-toggle moves cannot be made if we are in the strip 

and keep us out of it if we are out of it. Toggle moves also change the parity of 

the x-coordinate, whereas non-toggle moves do not. Now we start and finish 

out of the strip, so we need an even number of toggle moves. On the other 

hand, we start with even x and end with odd x, so we need an odd number of 

toggle moves. Hence the task is impossible.  

A2  

We need two general results: the angle bisector theorem; and the result about 

the feet of the perpendiculars from a general point inside a triangle. The second 

is not so well-known. Let P be a general point in the triangle ABC with X, Y, Z 
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the feet of the perpendiculars to BC, CA, AB. Then PA = YZ/sin A and �APB - 

�C = �XZY. To prove the first part: AP = AY/sin APY = AY/sin AZY (since AYPZ 

is cyclic) = YZ/sin A (sine rule). To prove the second part: �XZY = �XZP + 

�YZP = �XBP + �YAP = 90o - �XPB + 90o - �YPA = 180o - (360o - �APB - 

�XPY) = -180o + �APB + (180o - �C) = �APB - �C.  

So, returning to the problem, �APB - �C = �XZY and �APC - �B = �XYZ. 

Hence XYZ is isosceles: XY = XZ. Hence PC sin C = PB sin B. But AC sin C = 

AB sin B, so AB/PB = AC/PC. Let the angle bisector BD meet AP at W. Then, by 

the angle bisector theorem, AB/PB = AW/WP. Hence AW/WP = AC/PC, so, by 

the angle bisector theorem, CW is the bisector of angle ACP, as required.  

A3  

Setting m = n = 0, the given relation becomes: f(f(0)) = f(f(0)) + f(0). Hence f(0) 

= 0. Hence also f(f(0)) = 0. Setting m = 0, now gives f(f(n)) = f(n), so we may 

write the original relation as f(m + f(n)) = f(m) + f(n).  

So f(n) is a fixed point. Let k be the smallest non-zero fixed point. If k does not 

exist, then f(n) is zero for all n, which is a possible solution. If k does exist, then 

an easy induction shows that f(qk) = qk for all non-negative integers q. Now if n 

is another fixed point, write n = kq + r, with 0 ≤ r < k. Then f(n) = f(r + f(kq)) = 

f(r) + f(kq) = kq + f(r). Hence f(r) = r, so r must be zero. Hence the fixed points 

are precisely the multiples of k.  

But f(n) is a fixed point for any n, so f(n) is a multiple of k for any n. Let us take 

n1, n2, ... , nk-1 to be arbitrary non-negative integers and set n0 = 0. Then the 

most general function satisfying the conditions we have established so far is:  

      f(qk + r) = qk + nrk for 0 ≤ r < k.  

We can check that this satisfies the functional equation. Let m = ak + r, n = bk 

+ s, with 0 ≤ r, s < k. Then f(f(m)) = f(m) = ak + nrk, and f(n) = bk + nsk, so f(m 

+ f(n)) = ak + bk + nrk + nsk, and f(f(m)) + f(n) = ak + bk + nrk + nsk. So this is a 

solution and hence the most general solution.  

B1  

Answer  

4812.  

Solution  

Put 15a ± 16b = m2, 16a - 15b = n2. Then 15m2 + 16n2 = 481a = 13·37a. The 

quadratic residues mod 13 are 0, ±1, ±3, ±4, so the residues of 15m2 are 0, ±2, 

±5, ±6, and the residues of 16n2 are 0, ±1, ±3, ±4. Hence m and n must both be 
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divisible by 13. Similarly, the quadratic residues of 37 are 0, ±1, ±3, ±4, ±7, ±9, 

±10, ±11, ±12, ±16, so the residues of 15m2 are 0, ±2, ±5, ±6, ±8, ±13, ±14, 

±15, ±17, ±18, and the residues of 16n2 are 0, ±1, ±3, ±4, ±7, ±9, ±10, ±11, ±12, 

±16. Hence m and n must both be divisible by 37. Put m = 481m', n = 481n' 

and we get: a = 481(15m'2 + 16n'2). We also have 481b = 16m2 - 15n2 and 

hence b = 481(16m'2 - 15n'2). The smallest possible solution would come from 

putting m' = n' = 1 and indeed that gives a solution.  

This solution is straightforward, but something of a slog - all the residues have 

to be calculated. A more elegant variant is to notice that m4 + n4 = 481(a2 + b2). 

Now if m and n are not divisible by 13 we have m4 + n4 = 0 (mod 13). Take k so 

that km = 1 (mod 13), then (nk)4 = -(mk)4 = -1 (mod 13). But that is impossible 

because then (nk)12 = -1 (mod 13), but x12 = 1 (mod 13) for all non-zero 

residues. Hence m and n are both divisible by 13. The same argument shows 

that m and n are both divisible by 37.  

B2  

The starting point is the formula for the circumradius R of a triangle ABC: 2R = 

a/sin A = b/sin B = c/sin C. [Proof: the side a subtends an angle 2A at the 

center, so a = 2R sin A.] This gives that 2RA = BF/sin A, 2RC = BD/sin C, 2RE = 

FD/sin E. It is clearly not true in general that BF/sin A > BA + AF, although it is 

true if angle FAB ≥ 120o, so we need some argument that involves the hexagon 

as a whole.  

Extend sides BC and FE and take lines perpendicular to them through A and D, 

thus forming a rectangle. Then BF is greater than or equal to the side through A 

and the side through D. We may find the length of the side through A by taking 

the projections of BA and AF giving AB sin B + AF sin F. Similarly the side 

through D is CD sin C + DE sin E. Hence:  

    2BF ≥ AB sin B + AF sin F + CD sin C + DE sin E.   Similarly:  

    2BD ≥ BC sin B + CD sin D + AF sin A + EF sin E, and  

    2FD ≥ AB sin A + BC sin C + DE sin D + EF sin F.  

Hence 2BF/sin A + 2BD/sin C + 2FD/sin E ≥ AB(sin A/sin E + sin B/sin A) + 

BC(sin B/sin C + sin C/sin E) + CD(sin C/sin A + sin D/sin C) + DE(sin E/sin A 

+ sin D/sin E) + EF(sin E/sin C + sin F/sin E) + AF(sin F/sin A + sin A/sin C).  

We now use the fact that opposite sides are parallel, which implies that 

opposite angles are equal: A = D, B = E, C = F. Each of the factors multiplying 

the sides in the last expression now has the form x + 1/x which has minimum 

value 2 when x = 1. Hence 2(BF/sin A + BD/sin C + FD/sin E) ≥ 2p and the 

result is proved.  

142



B3  

Let xi - xi-1 = p occur r times and xi - xi-1 = -q occur s times. Then r + s = n 

and pr = qs. If p and q have a common factor d, the yi = xi/d form a similar set 

with p/d and q/d. If the result is true for the yi then it must also be true for the 

xi. So we can assume that p and q are relatively prime. Hence p divides s. Let s 

= kp. If k = 1, then p = s and q = r, so p + q = r + s = n. But we are given p + q 

< n. Hence k > 1. Let p + q = n/k = h.  

Up to this point everything is fairly obvious and the result looks as though it 

should be easy, but I did not find it so. Some fiddling around with examples 

suggested that we seem to get xi = xj for j = i + h. We observe first that xi+h - xi 

must be a multiple of h. For suppose e differences are p, and hence h-e are -

q. Then xi+h - xi = ep - (h - e)q = (e - q)h.  

The next step is not obvious. Let di = xi+h - xi. We know that all dis are multiples 

of h. We wish to show that at least one is zero. Now di+1 - di = (xi+h+1 - xi+h) - 

(xi+1 - xi) = (p or -q) - (p or -q) = 0, h or -h. So if neither of di nor di+1 are 

zero, then either both are positive or both are negative (a jump from positive to 

negative would require a difference of at least 2h). Hence if none of the dis are 

zero, then all of them are positive, or all of them are negative. But d0 + dh + ... + 

dkh is a concertina sum with value xn - x0 = 0. So this subset of the dis cannot 

all be positive or all negative. Hence at least one di is zero.  

 

IMO 1997 
A1  

 (a)  If m and n are both even, then f(m,n) = 0. Let M be the midpoint of the 

hypoteneuse. The critical point is that M is a lattice point. If we rotate the 

triangle through 180 to give the other half of the rectangle, we find that its 

coloring is the same. Hence S1 and S2 for the triangle are each half their values 

for the rectangle. But the values for the rectangle are equal, so they must also 

be equal for the triangle and hence f(m,n) = 0.  

If m and n are both odd, then the midpoint of the hypoteneuse is the center of a 

square and we may still find that the coloring of the two halves of the rectangle 

is the same. This time S1 and S2 differ by one for the rectangle, so f(m,n) = 1/2.  

(b)  The result is immediate from (a) for m and n of the same parity. The 

argument in (a) fails for m and n with opposite parity, because the two halves of 

the rectangle are oppositely colored. Let m be the odd side. Then if we extend 

the side length m by 1 we form a new triangle which contains the original 

triangle. But it has both sides even and hence S1 = S2. The area added is a 

triangle base 1 and height n, so area n/2. The worst case would be that all this 
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area was the same color, in which case we would get f(m,n) = n/2. But n <= 

max(m,n), so this establishes the result.  

(c)  Intuitively, it is clear that if the hypoteneuse runs along the diagonal of a 

series of black squares, and we then extend one side, the extra area taken in 

will be mainly black. We need to make this rigorous. For the diagonal to run 

along the diagonal of black squares we must have n = m. It is easier to work out 

the white area added by extending a side. The white area takes the form of a 

series of triangles each similar to the new n+1 x n triangle. The biggest has 

sides 1 and n/(n+1). The next biggest has sides (n-1)/n and (n-1)/(n+1), the 

next biggest (n-2)/n and (n-2)/(n+1) and so on, down to the smallest which is 

1/n by 1/(n+1). Hence the additional white area is 1/2 (n/(n+1) + (n-

1)2/(n(n+1)) + (n-2)2/(n(n+1)) + ... + 1/(n(n+1)) ) = 1/(2n(n+1))  (n2 + ... + 12) = 

(2n+1)/12. Hence the additional black area is n/2 - (2n+1)/12 = n/3 - 1/12 and 

the black excess in the additional area is n/6 - 1/6. If n is even, then f(n,n) = 0 

for the original area, so for the new triangle f(n+1,n) = (n-1)/6 which is 

unbounded.  

A2  

Extend BV to meet the circle again at X, and extend CW to meet the circle again 

at Y. Then by symmetry (since the perpendicular bisectors pass through the 

center of the circle) AU = BX and AU = CY. Also arc AX = arc BU, and arc AY = 

arc UC. Hence arc XY = arc BC and so angle BYC = angle XBY and hence TY = 

TB. So AU = CY = CT + TY = CT + TB.  

A3  

Without loss of generality we may assume x1 + ... + xn = +1. [If not just reverse 

the sign of every xi.] For any given arrangement xi we use sum to mean x1 + 2x2 

+ 3x3 + ... + nxn. Now if we add together the sums for x1, x2, ... , xn and the 

reverse xn, xn-1, ... , x1, we get (n+1)(x1 + ... + xn) = n+1. So either we are home 

with the original arrangement or its reverse, or they have sums of opposite sign, 

one greater than (n+1)/2 and one less than -(n+1)/2.  

A transposition changes the sum from ka + (k+1)b + other terms to kb + (k+1)a 

+ other terms. Hence it changes the sum by |a - b| (where a, b are two of the 

xi) which does not exceed n+1. Now we can get from the original arrangement 

to its reverse by a sequence of transpositions. Hence at some point in this 

sequence the sum must fall in the interval [-(n+1)/2, (n+1)/2] (because to get 

from a point below it to a point above it in a single step requires a jump of more 

than n+1). That point gives us the required permutation.  

B2  

Answer  
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(1,1), (16,2), (27,3).  

Solution  

Notice first that if we have am = bn, then we must have a = ce, b = cf, for some 

c, where m=fd, n=ed and d is the greatest common divisor of m and n. [Proof: 

express a and b as products of primes in the usual way.]  

In this case let d be the greatest common divisor of a and b2, and put a = de, 

b2 = df. Then for some c, a = ce, b = cf. Hence f ce = e c2f. We cannot have e = 

2f, for then the c's cancel to give e = f. Contradiction. Suppose 2f > e, then f = 

e c2f-e. Hence e = 1 and f = c2f-1. If c = 1, then f = 1 and we have the solution a 

= b = 1. If c ≥ 2, then c2f-1 ≥ 2f > f, so there are no solutions.  

Finally, suppose 2f < e. Then e = f ce-2f. Hence f = 1 and e = ce-2. ce-2 ≥ 2e-2 ≥ 
e for e ≥ 5, so we must have e = 3 or 4 (e > 2f = 2). e = 3 gives the solution a = 

27, b = 3. e = 4 gives the solution a = 16, b = 2.  

B3  

The key is to derive a recurrence relation for f(n) [not for f(2n)]. If n is odd, then 

the sum must have a 1. In fact, there is a one-to-one correspondence between 

sums for n and sums for n-1. So:  

          f(2n+1) = f(2n)  

Now consider n even. The same argument shows that there is a one-to-one 

correspondence between sums for n-1 and sums for n which have a 1. Sums 

which do not have a 1 are in one-to-one correspondence with sums for n/2 

(just halve each term). So:  

          f(2n) = f(2n - 1) + f(n) = f(2n - 2) + f(n).  

The upper limit is now almost immediate. First, the recurrence relations show 

that f is monotonic increasing. Now apply the second relation repeatedly to 

f(2n+1) to get:  

  f(2n+1) = f(2n+1 - 2n) + f(2n - 2n-1 + 1) + ... + f(2n - 1) + f(2n) = f(2n) + f(2n - 1 

) + ... + f(2n-1 + 1) + f(2n)   (*)  

and hence f(2n+1) ≥ (2n-1 + 1)f(2n)    

We can now establish the upper limit by induction. It is false for n = 1 and 2, 

but almost true for n = 2, in that: f(22) = 222/2. Now if f(2n) ≤ 2n2/2, then the 

inequality just established shows that f(2n+1) < 2n2n2/2 < 2(n2+2n+1)/2 = 2(n+1)2/2, so 

it is true for n + 1. Hence it is true for all n > 2.  
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Applying the same idea to the lower limit does not work. We need something 

stronger. We may continue (*) inductively to obtain f(2n+1) = f(2n) + f(2n - 1) + 

... + f(3) + f(2) + f(1) + 1.   (**)     We now use the following lemma:  

  f(1) + f(2) + ... + f(2r) ≥ 2r f(r)  

We group the terms on the lhs into pairs and claim that f(1) + f(2r) ≥ f(2) + f(2r-

1) ≥ f(3) + f(2r-2) ≥ ... ≥ f(r) + f(r+1). If k is even, then f(k) = f(k+1) and f(2r-k) 

= f(2r+1-k), so f(k) + f(2r+1-k) = f(k+1) + f(2r-k). If k is odd, then f(k+1) = f(k) 

+ f((k+1)/2) and f(2r+1-k) = f(2r-k) + f((2r-k+1)/2), but f is monotone so 

f((k+1)/2) ≤ f((2r+1-k)/2) and hence f(k) + f(2r+1-k) ≥ f(k+1) + f(2r-k), as 

required.  

Applying the lemma to (**) gives f(2n+1) > 2n+1f(2n-1). This is sufficient to prove 

the lower limit by induction. It is true for n = 1. Suppose it is true for n. Then 

f(2n+1) > 2n+12(n-1)2/4 = 2(n2-2n+1+4n+4)/4 > 2(n+1)2/4, so it is true for n+1.  

 

IMO 1998 
A1 

Let AC and BD meet at X. Let H, K be the feet of the perpendiculars from P to 

AC, BD respectively. We wish to express the areas of ABP and CDP in terms of 

more tractable triangles. There are essentially two different configurations 

possible. In the first, we have area PAB = area ABX + area PAX + area PBX, and 

area PCD = area CDX - area PCX - area PDX. So if the areas being equal is 

equivalent to: area ABX - area CDX + area PAX + area PCX + area PBX + area 

PDX = 0. ABX and CDX are right-angled, so we may write their areas as 

AX·BX/2 and CX·DX/2. We may also put AX = AH - HX = AH - PK, BX = BK - 

PH, CX = CH + PK, DX = DK + PH. The other triangles combine in pairs to give 

area ACP + area BDP = (AC·PH + BD·PK)/2. This leads, after some cancellation 

to AH·BK = CH·DK. There is a similar configuration with the roles of AB and CD 

reversed.  

The second configuration is area PAB = area ABX + area PAX - PBX, area PCD 

= area CDX + area PDX - area PCX. In this case AX = AH + PK, BX = BK - PH, 

CX = CH - PK, DX = DK + PH. But we end up with the same result: AH·BK = 

CH·DK.  

Now if ABCD is cyclic, then it follows immediately that P is the center of the 

circumcircle and AH = CH, BK = DK. Hence the areas of PAB and PCD are 

equal.  

Conversely, suppose the areas are equal. If PA > PC, then AH > CH. But since 

PA = PB and PC = PD (by construction), PB > PD, so BK > DK. So AH·BK > 

146



CH·DK. Contradiction. So PA is not greater than PC. Similarly it cannot be less. 

Hence PA = PC. But that implies PA = PB = PC = PD, so ABCD is cyclic.  

A2 

Let us count the number N of triples (judge, judge, contestant) for which the 

two judges are distinct and rate the contestant the same. There are b(b-1)/2 

pairs of judges in total and each pair rates at most k contestants the same, so 

N ≤ kb(b-1)/2.  

Now consider a fixed contestant X and count the number of pairs of judges 

rating X the same. Suppose x judges pass X, then there are x(x-1)/2 pairs who 

pass X and (b-x)(b-x-1)/2 who fail X, so a total of (x(x-1) + (b-x)(b-x-1))/2 

pairs rate X the same. But (x(x-1) + (b-x)(b-x-1))/2 = (2x2 - 2bx + b2 - b)/2 = 

(x - b/2)2 + b2/4 - b/2 ≥ b2/4 - b/2 = (b - 1)2/4 - 1/4. But (b - 1)2/4 is an 

integer (since b is odd), so the number of pairs rating X the same is at least (b 

- 1)2/4. Hence N ≥ a (b - 1)2/4. Putting the two inequalities together gives k/a ≥ 
(b - 1)/2b.  

A3 

Let n = p1
a
1...pr

a
r. Then d(n) = (a1 + 1)(a2 + 1) ... (ar + 1), and d(n2) = (2a1 + 

1)(2a2 + 1) ... (2ar + 1). So the ai must be chosen so that (2a1 + 1)(2a2 + 1) ... 

(2ar + 1) = k (a1 + 1)(a2 + 1) ... (ar + 1). Since all (2ai + 1) are odd, this clearly 

implies that k must be odd. We show that conversely, given any odd k, we can 

find ai.  

We use a form of induction on k. First, it is true for k = 1 (take n = 1). Second, 

we show that if it is true for k, then it is true for 2mk - 1. That is sufficient, since 

any odd number has the form 2mk - 1 for some smaller odd number k. Take ai = 

2i((2m - 1)k - 1) for i = 0, 1, ... , m-1. Then 2ai + 1 = 2i+1(2m - 1)k - (2i+1 - 1) 

and ai + 1 = 2i(2m - 1)k - (2i - 1). So the product of the (2ai + 1)'s divided by 

the product of the (ai + 1)'s is 2m(2m - 1)k - (2m - 1) divided by (2m - 1)k, or 

(2mk - 1)/k. Thus if we take these ais together with those giving k, we get 2mk - 

1, which completes the induction.    

B1  

Answer (a, b) = (11, 1), (49, 1) or (7k2, 7k).  

Solution  

If a < b, then b ≥ a + 1, so ab2 + b + 7 > ab2 + b ≥ (a + 1)(ab + 1) = a2b + a + 

ab ≥ a2b + a + b. So there can be no solutions with a < b. Assume then that a ≥ 
b.  
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Let k = the integer (a2b + a + b)/(ab2 + b + 7). We have (a/b + 1/b)(ab2 + b + 7) 

= ab2 + a + ab + 7a/b + 7/b + 1 > ab2 + a + b. So k < a/b + 1/b. Now if b ≥ 3, 

then (b - 7/b) > 0 and hence (a/b - 1/b)(ab2 + b + 7) = ab2 + a - a(b - 7/b) - 

1 - 7/b < ab2 + a < ab2 + a + b. Hence either b = 1 or 2 or k > a/b - 1/b.  

If a/b - 1/b < k < a/b + 1/b, then a - 1 < kb < a + 1. Hence a = kb. This gives 

the solution (a, b) = (7k2, 7k).  

It remains to consider b = 1 and 2. If b = 1, then a + 8 divides a2 + a + 1 and 

hence also a(a + 8) - (a2 + a + 1) = 7a - 1, and hence also 7(a + 8) - (7a - 1) 

= 57. The only factors bigger than 8 are 19 and 57, so a = 11 or 49. It is easy to 

check that (a, b) = (11, 1) and (49, 1) are indeed solutions.  

If b = 2, then 4a + 9 divides 2a2 + a + 2, and hence also a(4a + 9) - 2(2a2 + a + 

2) = 7a - 4, and hence also 7(4a + 9) - 4(7a - 4) = 79. The only factor greater 

than 9 is 79, but that gives a = 35/2 which is not integral. Hence there are no 

solutions for b = 2.  

A variant on this from Johannes Tang Lek Huo is as follows:  

We have ab2 + b + 7 divides a(ab2 + b + 7) - b(a2b + a + b) = 7a - b2 . If 7a = 

b2, then b must be a multiple of 7, so b = 7k for some k. Then a = 7k2, and it is 

easy to check that this is a solution. We cannot have 7a < b2 for then 0 < b2 - 

7a < ab2 < ab2 + b + 7. If 7a > b, then we must have 7a - b ≤ ab2 + b + 7 > ab2, 

so 7 > b2, so b = 1 or 2.  

We can then continue as above.  

B2 

We show that RI2 + SI2 - RS2 > 0. The result then follows from the cosine rule.  

BI is perpendicular to MK and hence also to RS. So IR2 = BR2 + BI2 and IS2 = BI2 

+ BS2. Obviously RS = RB + BS, so RS2 = BR2 + BS2 + 2 BR·BS. Hence RI2 + SI2 

- RS2 = 2 BI2 - 2 BR·BS. Consider the triangle BRS. The angles at B and M are 

90 - B/2 and 90 - A/2, so the angle at R is 90 - C/2. Hence BR/BM = cos 

A/2/cos C/2 (using the sine rule). Similarly, considering the triangle BKS, BS/BK 

= cos C/2/cos A/2. So BR·BS = BM·BK = BK2. Hence RI2 + SI2 - RS2 = 2(BI2 - 

BK2) = 2 IK2 > 0.  

B3  

Answer  

120  

Solution  
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Let f(1) = k. Then f(kt2) = f(t)2 and f(f(t)) = k2t. Also f(kt)2 = 1·f(kt)2 = f(k3t2) = 

f(12f(f(kt2))) = k2f(kt2) = k2f(t)2. Hence f(kt) = k f(t).  

By an easy induction knf(tn+1) = f(t)n+1. But this implies that k divides f(t). For 

suppose the highest power of a prime p dividing k is a > b, the highest power of 

p dividing f(t). Then a > b(1 + 1/n) for some integer n. But then na > (n + 1)b, 

so kn does not divide f(t)n+1. Contradiction.  

Let g(t) = f(t)/k. Then f(t2f(s)) = f(t2kg(s)) = k f(t2g(s) = k2g(t2g(s)), whilst s f(t)2 

= k2s f(t)2. So g(t2g(s)) = s g(t)2. Hence g is also a function satisfying the 

conditions which evidently has smaller values than f (for k > 1). It also satisfies 

g(1) = 1. Since we want the smallest possible value of f(1998) we may restrict 

attention to functions f satisfying f(1) = 1.  

Thus we have f(f(t) = t and f(t2) = f(t)2. Hence f(st)2 = f(s2t2) = f(s2f(f(t2))) = 

f(s)2f(t2) = f(s)2f(t)2. So f(st) = f(s) f(t).  

Suppose p is a prime and f(p) = m·n. Then f(m)f(n) = f(mn) = f(f(p)) = p, so one 

of f(m), f(n) = 1. But if f(m) = 1, then m = f(f(m)) = f(1) = 1. So f(p) is prime. If 

f(p) = q, then f(q) = p.  

Now we may define f arbitarily on the primes subject only to the conditions that 

each f(prime) is prime and that if f(p) = q, then f(q) = p. For suppose that s = 

p1
a
1...pr

a
r and that f(pi) = qi. If t has any additional prime factors not included in 

the qi, then we may add additional p's to the expression for s so that they are 

included (taking the additional a's to be zero). So suppose t = q1
b
1...qr

b
r.Then 

t2f(s) = q1
2b

1
+a

1 ...qr
2b

r
+a

r and hence f(t2f(s) = p1
2b

1
+a

1 ...pr
2b

r
+a

r = s f(t)2.  

We want the minimum possible value of f(1998). Now 1998 = 2.33.37, so we 

achieve the minimum value by taking f(2) = 3, f(3) = 2, f(37) = 5 (and f(37) = 5). 

This gives f(1998) = 3·235 = 120.  

 

IMO 1999 
A1  

by Gerhard Woeginger  

The possible sets are just the regular n-gons (n > 2).  

Let A1, A2, ... , Ak denote the vertices of the convex hull of S (and take indices 

mod k as necessary). We show first that these form a regular k-gon. Ai+1 must 

lie on the perpendicular bisector of Ai and Ai+2 (otherwise its reflection would lie 

outside the hull). Hence the sides are all equal. Similarly, Ai+1 and Ai+2 must be 

reflections in the perpendicular bisector of Ai and Ai+3 (otherwise one of the 

reflections would lie outside the hull). Hence all the angles are equal.  
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Any axis of symmetry for S must also be an axis of symmetry for the Ai, and 

hence must pass through the center C of the regular k-gon. Suppose X is a 

point of S in the interior of k-gon. Then it must lie inside or on some triangle 

AiAi+1C. C must be the circumcenter of AiAi+1X (since it lies on the three 

perpendicular bisectors, which must all be axes of symmetry of S), so X must lie 

on the circle center C, through Ai and Ai+1. But all points of the triangle AiAi+1X 

lie strictly inside this circle, except Aiand Ai+1, so X cannot be in the interior of 

the k-gon.  

A2  

Answer Answer: C = 1/8. Equality iff two xi are equal and the rest zero.  

Solution  

By a member of the Chinese team at the IMO - does anyone know who?  

(∑ xi)
4 = (∑ xi

2 + 2 ∑i<jxixj)
2 ≥ 4 (∑ xi

2) (2 ∑i<j xixj) = 8 ∑i<j ( xixj ∑ xk
2) ≥ 8 ∑i<j 

xixj(xi
2 + xj

2).  

The second inequality is an equality only if n - 2 of the xi are zero. So assume 

that x3 = x4 = ... = xn = 0. Then for the first inequality to be an equality we 

require that (x1
2 + x2

2) = 2 x1x2 and hence that x1 = x2. However, that is clearly 

also sufficient for equality.  

Alternative solution by Gerhard Woeginger  

Setting x1 = x2 = 1, xi = 0 for i > 2 gives equality with C = 1/8, so, C cannot be 

smaller than 1/8.  

We now use induction on n. For n = 2, the inequality with C = 1/8 is equivalent 

to (x1 - x2)
4 ≥ 0, which is true, with equality iff x1 = x2. So the result is true for n 

= 2.  

For n > 2, we may take x1 + ... + xn = 1, and x1 ≤ x2 ≤ ... ≤ xn. Now replace x1 

and x2 by 0 and x1 + x2. The sum on the rhs is unchanged and the sum on the 

lhs is increased by (x1 + x2)
3 S - (x1

3 + x2
3) S - x1x2(x1

2 + x2
2), where S = x3 + x4 

+ ... + xn. But S is at least 1/3 (the critical case is n = 3, xi = 1/3), so this is at 

least x1x2(x1 + x2 - x1
2 - x2

2). This is strictly greater than 0 unless x1 = 0 (when it 

equals 0), so the result follows by induction.  

Comment. The first solution is elegant and shows clearly why the inequality is 
true. The second solution is more plodding, but uses an approach which is 
more general and can be applied in many other cases. At least with hindsight, 
the first solution is not as impossible to find as one might think. A little playing 
around soon uncovers the fact that one can get C = 1/8 with two xi equal and 
the rest zero, and that this looks like the best possible. One just has to make 
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the jump to replacing (xi
2 + xj

2) by ∑ xk
2. The solution is then fairly clear. Of 

course, that does not detract from the contestant's achievement, because I and 
almost everyone else who has looked at the problem failed to make that jump.  

A3  

Answer  

Answer: n/2 (n/2 + 1) = n(n + 2)/4.  

Solution  

Let n = 2m. Color alternate squares black and white (like a chess board). It is 

sufficient to show that m(m+1)/2 white squares are necessary and sufficient to 

deal with all the black squares.  

This is almost obvious if we look at the diagonals.  

Look first at the odd-length white diagonals. In every other such diagonal, mark 

alternate squares (starting from the border each time, so that r+1 squares are 

marked in a diagonal length 2r+1). Now each black diagonal is adjacent to a 

picked white diagonal and hence each black square on it is adjacent to a 

marked white square. In all 1 + 3 + 5 + ... + m-1 + m + m-2 + ... + 4 + 2 = 1 + 

2 + 3 + ... + m = m(m+1)/2 white squares are marked. This proves sufficiency.  

For necessity consider the alternate odd-length black diagonals. Rearranging, 

these have lengths 1, 3, 5, ... , 2m-1. A white square is only adjacent to 

squares in one of these alternate diagonals and is adjacent to at most 2 

squares in it. So we need at least 1 + 2 + 3 + ... + m = m(m+1)/2 white 

squares.  

B1  

Answer  

(1, p) for any prime p; (2, 2); (3, 3).  

Solution  

by Gerhard Woeginger, Technical University, Graz  

Answer: (1, p) for any prime p; (2, 2); (3, 3).  

Evidently (1, p) is a solution for every prime p. Assume n > 1 and take q to be 

the smallest prime divisor of n. We show first that q = p.  

Let x be the smallest positive integer for which (p - 1)x = - 1 (mod q), and y the 

smallest positive integer for which (p - 1)y = 1 (mod q). Certainly y exists and 
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indeed y < q, since (p - 1)q-1 = 1 (mod q). We know that (p - 1)n = -1 (mod q), 

so x exists also. Writing n = sy + r, with 0 ≤ r < y, we conclude that (p - 1)r = -1 

(mod q), and hence x ≤ r < y (r cannot be zero, since 1 is not -1 (mod q) ).  

Now write n = hx + k with 0 ≤ k < x. Then   -1 = (p - 1)n = (-1)h(p - 1)k (mod 

q). h cannot be even, because then (p - 1)k = -1 (mod q), contradicting the 

minimality of x. So h is odd and hence (p - 1)k = 1 (mod q) with 0 ≤ k < x < y. 

This contradicts the minimality of y unless k = 0, so n = hx. But x < q, so x = 1. 

So (p - 1) = -1 (mod q). p and q are primes, so q = p, as claimed.  

So p is the smallest prime divisor of n. We are also given that n ≤ 2p. So either 

p = n, or p = 2, n = 4. The latter does not work, so we have shown that n = p. 

Evidently n = p = 2 and n = p = 3 work. Assume now that p > 3. We show that 

there are no solutions of this type.  

Expand (p - 1)p + 1 by the binomial theorem, to get (since (-1)p = -1): 1 + -1 + 

p2 - 1/2 p(p - 1)p2 + p(p - 1)(p - 2)/6 p3 - ...  

The terms of the form (bin coeff) pi with i >= 3 are obviously divisible by p3, 

since the binomial coefficients are all integral. Hence the sum is p2 + a multiple 

of p3. So the sum is not divisible by p3. But for p > 3, pp-1 is divisible by p3, so it 

cannot divide (p - 1)p + 1, and there are no more solutions.  

B2  

Solution by Jean-Pierre Ehrmann  

Let O, O1, O2 and r, r1, r2 be the centers and radii of C, C1, C2 respectively. Let 

EF meet the line O1O2 at W, and let O2W = x. We need to prove that x = r2.  

Take rectangular coordinates with origin O2, x-axis O2O1, and let O have 

coordinates (a, b). Notice that O and M do not, in general, lie on O1O2. Let AB 

meet the line O1O2 at V.  

We observe first that O2V = r2
2/(2 r1). [For example, let X be a point of 

intersection of C1 and C2 and let Y be the midpoint of O2X. Then O1YO2 and 

XVO2 are similar. Hence, O2V/O2X = O2Y/O2O1.]  

An expansion (or, to be technical, a homothecy) center M, factor r/r1 takes O1 

to O and EF to AB. Hence EF is perpendicular to O1O2. Also the distance of O1 

from EF is r1/r times the distance of O from AB, so (r1 - x) = r1/r (a - r2
2/(2 r1) ) 

(*).  

We now need to find a. We can get two equations for a and b by looking at the 

distances of O from O1 and O2. We have:  

  (r - r1)
2 = (r1 - a)2 + b2, and  

  (r - r2)
2 = a2 + b2.  
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Subtracting to eliminate b, we get   a = r2
2/(2 r1) + r - r r2/r1.   Substituting back 

in (*), we get x = r2, as required.  

Alternative solution by Marcin Kuczma, communicated Arne Smeets  

Let C1 and C2 meet at X and Y, and let AN meet C2 again at D. Then AE·AM = 

AX·AY = AD·AN, so triangles AED and ANM are similar. Hence �ADE = �AMN.  

Take the tangent AP as shown. Then �PAN = �AMN = �ADE, so AP and DE are 

parallel. The homothecy center M mapping C to C1 takes the line AP to the line 

ED, so ED is tangent to C1 at E. A similar argument show that it is tangent to C2 

at D. The homothecy takes AB to EF, so EF is perpendicular to O1O2 (the line of 

centers). Hence O2EF is isosceles. So angle O2EF = angle O2FE = angle DEO2 

(DE tangent). In other words, O2E bisects angle DEF. But ED is tangent to C2, 

so EF is also.  

B3  

Solution communicated by Ong Shien Jin  

Let c = f(0) and A be the image f(R). If a is in A, then it is straightforward to find 

f(a): putting a = f(y) and x = a, we get f(a - a) = f(a) + a2 + f(a) - 1, so f(a) = (1 

+ c)/2 - a2/2 (*).  

The next step is to show that A - A = R. Note first that c cannot be zero, for if it 

were, then putting y = 0, we get: f(x - c) = f(c) + xc + f(x) - 1 (**) and hence 

f(0) = f(c) = 1. Contradiction. But (**) also shows that f(x - c) - f(x) = xc + (f(c) 

- 1). Here x is free to vary over R, so xc + (f(c) - 1) can take any value in R.  

Thus given any x in R, we may find a, b in A such that x = a - b. Hence f(x) = 

f(a - b) = f(b) + ab + f(a) - 1. So, using (*):   f(x) = c - b2/2 + ab - a2/2 = c - 

x2/2.  

In particular, this is true for x in A. Comparing with (*) we deduce that c = 1. So 

for all x in R we must have   f(x) = 1 - x2/2. Finally, it is easy to check that this 

satisfies the original relation and hence is the unique solution.  

 

IMO 2000 
A1  

Angle EBA = angle BDM (because CD is parallel to AB) = angle ABM (because 

AB is tangent at B). So AB bisects EBM. Similarly, BA bisects angle EAM. Hence 

E is the reflection of M in AB. So EM is perpendicular to AB and hence to CD. 

So it suffices to show that MP = MQ.  
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Let the ray NM meet AB at X. XA is a tangent so XA2 = XM·XN. Similarly, XB is a 

tangent, so XB2 = XM·XN. Hence XA = XB. But AB and PQ are parallel, so MP = 

MQ.  

A2  

An elegant solution due to Robin Chapman is as follows:  

(B - 1 + 1/C) = B(1 - 1/B + 1/(BC) ) = B(1 + A - 1/B). Hence, (A - 1 + 1/B)(B 

- 1 + 1/C) = B(A2 - (1 - 1/B)2) ≤ B A2. So the square of the product of all three 

≤ B A2 C B2 A C2 = 1.  

Actually, that is not quite true. The last sentence would not follow if we had 

some negative left hand sides, because then we could not multiply the 

inequalities. But it is easy to deal separately with the case where (A - 1 + 1/B), 

(B - 1 + 1/C), (C - 1 + 1/A) are not all positive. If one of the three terms is 

negative, then the other two must be positive. For example, if A - 1 + 1/B < 0, 

then A < 1, so C - 1 + 1/A > 0, and B > 1, so B - 1 + 1/C > 0. But if one term 

is negative and two are positive, then their product is negative and hence less 

than 1.  

Few people would manage this under exam conditions, but there are plenty of 
longer and easier to find solutions!  

A3  

Answer  

k ≥ 1/(N-1).  

Solution  

An elegant solution by Gerhard Woeginger is as follows:  

Suppose k < 1/(N-1), so that k0 = 1/k - (N - 1) > 0. Let X be the sum of the 

distances of the points from the rightmost point. If a move does not change the 

rightmost point, then it reduces X. If it moves the rightmost point a distance z to 

the right, then it reduces X by at least z/k - (N-1)z = k0 z. X cannot be reduced 

below nil. So the total distance moved by the rightmost point is at most X0/k0, 

where X0 is the initial value of X.  

Conversely, suppose k ≥ 1/(N-1), so that k1 = (N-1) - 1/k ≥ 0. We always move 

the leftmost point. This has the effect of moving the rightmost point z > 0 and 

increasing X by (N-1)z - z/k = k1z ≥ 0. So X is never decreased. But z ≥ k X/(N-

1) ≥ k X0/(N-1) > 0. So we can move the rightmost point arbitrarily far to the 

right (and hence all the points, since another N-1 moves will move the other 

points to the right of the rightmost point).  
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B1  

Answer  

12. Place 1, 2, 3 in different boxes (6 possibilities) and then place n in the same 

box as its residue mod 3. Or place 1 and 100 in different boxes and 2 - 99 in 

the third box (6 possibilities).  

Solution  

An elegant solution communicated (in outline) by both Mohd Suhaimi Ramly and 
Fokko J van de Bult is as follows:  

Let Hn be the corresponding result that for cards numbered 1 to n the only 

solutions are by residue mod 3, or 1 and n in separate boxes and 2 to n - 1 in 

the third box. It is easy to check that they are solutions. Hn is the assertion that 

there are no others. H3 is obviously true (although the two cases coincide). We 

now use induction on n. So suppose that the result is true for n and consider 

the case n + 1.  

Suppose n + 1 is alone in its box. If 1 is not also alone, then let N be the sum of 

the largest cards in each of the boxes not containing n + 1. Since n + 2 ≤ N ≤ n 

+ (n - 1) = 2n - 1, we can achieve the same sum N as from a different pair of 

boxes as (n + 1) + (N - n - 1). Contradiction. So 1 must be alone and we have 

one of the solutions envisaged in Hn+1.  

If n + 1 is not alone, then if we remove it, we must have a solution for n. But 

that solution cannot be the n, 1, 2 to n - 1 solution. For we can easily check 

that none of the three boxes will then accomodate n + 1. So it must be the mod 

3 solution. We can easily check that in this case n + 1 must go in the box with 

matching residue, which makes the (n + 1) solution the other solution envisaged 

by Hn+1. That completes the induction.  

My much more plodding solution (which I was quite pleased with until I saw the 
more elegant solution above) follows. It took about half-an-hour and shows the 
kind of kludge one is likely to come up with under time pressure in an exam!  

With a suitable labeling of the boxes as A, B, C, there are 4 cases to consider:  

Case 1: A contains 1; B contains 2; C contains 3  

Case 2: A contains 1,2  

Case 3: A contains 1, 3; B contains 2  

Case 4: A contains 1; B contains 2, 3.  

We show that Cases 1 and 4 each yield just one possible arrangement and 

Cases 2 and 3 none.  
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In Case 1, it is an easy induction that n must be placed in the same box as its 

residue (in other words numbers with residue 1 mod 3 go into A, numbers with 

residue 2 go into B, and numbers with residue 0 go into C). For (n + 1) + (n - 

2) = n + (n - 1). Hence n + 1 must go in the same box as n - 2 (if they were in 

different boxes, then we would have two pairs from different pairs of boxes with 

the same sum). It is also clear that this is a possible arrangement. Given the 

sum of two numbers from different boxes, take its residue mod 3. A residue of 0 

indicates that the third (unused) box was C, a residue of 1 indicates that the 

third box was A, and a residue of 2 indicates that the third box was B. Note that 

this unique arrangement gives 6 ways for the question, because there are 6 

ways of arranging 1, 2 and 3 in the given boxes.  

In Case 2, let n be the smallest number not in box A. Suppose it is in box B. Let 

m be the smallest number in the third box, C. m - 1 cannot be in C. If it is in A, 

then m + (n - 1) = (m - 1) + n. Contradiction (m is in C, n - 1 is in A, so that 

pair identifies B as the third box, but m - 1 is in A and n is in B, identifying C). 

So m - 1 must be in B. But (m - 1) + 2 = m + 1. Contradiction. So Case 2 is 

not possible.  

In Case 3, let n be the smallest number in box C, so n - 1 must be in A or B. If 

n - 1 is in A, then (n - 1) + 2 = n + 2. Contradiction (a sum of numbers in A 

and B equals a sum from C and A). If n - 1 is in B, then (n - 1) + 3 = n + 2. 

Contradiction ( a sum from B and A equals a sum from C and B). So Case 3 is 

not possible.  

In Case 4, let n be the smallest number in box C. n - 1 cannot be in A, or (n - 

1) + 2 = 3 + n (pair from A, B with same sum as pair from B, C), so n - 1 must 

be in B. Now n + 1 cannot be in A (or (n + 1) + 2 = 3 + n), or in B or C (or 1 + 

(n + 1) = 2 + n). So n + 1 cannot exist and hence n = 100. It is now an easy 

induction that all of 4, 5, ... 98 must be in B. For given that m is in B, if m + 1 

were in A, we would have 100 + m = 99 + (m + 1). But this arrangement (1 in A, 

2 - 99 in B, 100 in C) is certainly possible: sums 3 - 100 identify C as the third 

box, sum 101 identifies B as the third box, and sums 102-199 identify A as the 

third box. Finally, as in Case 1, this unique arrangement corresponds to 6 ways 

of arranging the cards in the given boxes.  

B2  

Answer  

Yes  

Solution  

Note that for b odd we have 2ab + 1 = (2a + 1)(2a(b-1) - 2a(b-2) + ... + 1), and so 

2a + 1 is a factor of 2ab + 1. It is sufficient therefore to find m such that (1) m 

has only a few distinct prime factors, (2) 2m + 1 has a large number of distinct 
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prime factors, (3) m divides 2m + 1. For then we can take k, a product of 

enough distinct primes dividing 2m + 1 (but not m), so that km has exactly 2000 

factors. Then km still divides 2m + 1 and hence 2km + 1.  

The simplest case is where m has only one distinct prime factor p, in other 

words it is a power of p. But if p is a prime, then p divides 2p - 2, so the only p 

for which p divides 2p + 1 is 3. So the questions are whether ah = 2m + 1 is (1) 

divisible by m = 3h and (2) has a large number of distinct prime factors.  

ah+1 = ah(2
2m - 2m + 1), where m = 3h. But 2m = (ah - 1), so ah+1 = ah(ah

2 - 3 ah 

+ 3). Now a1 = 9, so an easy induction shows that 3h+1 divides ah, which 

answers (1) affirmatively. Also, since ah is a factor of ah+1, any prime dividing ah 

also divides ah+1. Put ah = 3h+1bh. Then bh+1 = bh(3
2h+1bh

2 - 3h+2bh + 1). Now 

(32h+1bh
2 - 3h+2bh + 1) > 1, so it must have some prime factor p > 1. But p 

cannot be 3 or divide bh (since (32h+1bh
2 - 3h+2bh + 1) is a multiple of 3bh plus 

1), so bh+1 has at least one prime factor p > 3 which does not divide bh. So bh+1 

has at least h distinct prime factors greater than 3, which answers (2) 

affirmatively. But that is all we need. We can take m in the first paragraph above 

to be 32000: (1) m has only one distinct prime factor, (2) 2m + 1 = 32001 b2000 has 

at least 1999 distinct prime factors other than 3, (3) m divides 2m + 1. Take k to 

be a product of 1999 distinct prime factors dividing b2000. Then N = km is the 

required number with exactly 2000 distinct prime factors which divides 2N + 1.  

B3  

Let O be the centre of the incircle. Let the line parallel to A1A2 through L2 meet 

the line A2O at X. We will show that X is the reflection of K2 in L2L3. Let A1A3 

meet the line A2O at B2. Now A2K2 is perpendicular to K2B2 and OL2 is 

perpendicular to L2B2, so A2K2B2 and OL2B2 are similar. Hence K2L2/L2B2 = 

A2O/OB2. But OA3 is the angle bisector in the triangle A2A3B2, so A2O/OB2 = 

A2A3/B2A3.  

Take B'2 on the line A2O such that L2B2 = L2B'2 (B'2 is distinct from B2 unless 

L2B2 is perpendicular to the line). Then angle L2B'2X = angle A3B2A2. Also, since 

L2X is parallel to A2A1, angle L2XB'2 = angle A3A2B2. So the triangles L2XB'2 and 

A3A2B2 are similar. Hence A2A3/B2A3 = XL2/B2'L2 = XL2/B2L2 (since B'2L2 = B2L2).  

Thus we have shown that K2L2/L2B2 = XL2/B2L2 and hence that K2L2 = XL2. L2X is 

parallel to A2A1 so angle A2A1A3 = angle A1L2X = angle L2XK2 + angle L2K2X = 2 

angle L2XK2 (isosceles). So angle L2XK2 = 1/2 angle A2A1A3 = angle A2A1O. L2X 

and A2A1 are parallel, so K2X and OA1 are parallel. But OA1 is perpendicular to 

L2L3, so K2X is also perpendicular to L2L3 and hence X is the reflection of K2 in 

L2L3.  

Now the angle K3K2A1 = angle A1A2A3, because it is 90o - angle K3K2A2 = 90o - 

angle K3A3A2 (A2A3K2K3 is cyclic with A2A3 a diameter) = angle A1A2A3. So the 
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reflection of K2K3 in L2L3 is a line through X making an angle A1A2A3 with L2X, in 

other words, it is the line through X parallel to A2A3.  

Let Mi be the reflection of Li in AiO. The angle M2XL2 = 2 angle OXL2 = 2 angle 

A1A2O (since A1A2 is parallel to L2X) = angle A1A2A3, which is the angle betwee 

L2X and A2A3. So M2X is parallel to A2A3, in other words, M2 lies on the reflection 

of K2K3 in L2L3.  

If follows similarly that M3 lies on the reflection. Similarly, the line M1M3 is the 

reflection of K1K3 in L1L3, and the line M1M2 is the reflection of K1K2 in L1L2 and 

hence the triangle formed by the intersections of the three reflections is just 

M1M2M3.  

 

IMO 2001 
A1 

Take D on the circumcircle with AD parallel to BC. Angle CBD = angle BCA, so 

angle ABD ≥ 30o. Hence angle AOD ≥ 60o. Let Z be the midpoint of AD and Y 

the midpoint of BC. Then AZ ≥ R/2, where R is the radius of the circumcircle. 

But AZ = YX (since AZYX is a rectangle).  

Now O cannot coincide with Y (otherwise angle A would be 90o and the triangle 

would not be acute-angled). So OX > YX ≥ R/2. But XC = YC - YX < R - YX ≤ 
R/2. So OX > XC.  

Hence angle COX < angle OCX. Let CE be a diameter of the circle, so that 

angle OCX = angle ECB. But angle ECB = angle EAB and angle EAB + angle 

BAC = angle EAC = 90o, since EC is a diameter. Hence angle COX + angle BAC 

< 90o.  

A2 

A not particularly elegant, but fairly easy, solution is to use Cauchy: (∑ xy)2 ≤ ∑ 

x2 ∑ y2.  

To get the inequality the right way around we need to take x2 = a/a' [to be 

precise, we are taking x1
2 = a/a', x2

2 = b/b', x3
2 = c/c'.]. Take y2 = a a', so that 

xy = a. Then we get ∑ a/a' >= (∑ a)2/∑ a a'.  

Evidently we need to apply Cauchy again to deal with ∑ a a'. This time we want 

∑ a a' ≤ something. The obvious X=a, Y=a' does not work, but if we put X=a1/2, 

Y=a1/2a', then we have ∑ a a' ≤ (∑ a)1/2 (∑ a a'2)1/2. So we get the required 

inequality provided that (∑ a)3/2 ≥ (∑ a a'2)1/2 or (∑ a)3 ≥ ∑ a a'2.  
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Multiplying out, this is equivalent to: 3(ab2 + ac2 + ba2 + bc2 + ca2 + cb2) ≥ 
18abc, or a(b - c)2 + b(c - a)2 + c(a - b)2 ≥ 0, which is clearly true.  

A3 

Notice first that the result is not true for a 20 x 20 array. Make 20 rectangles 

each 2 x 10, labelled 1, 2, ... , 20. Divide the 20 x 20 array into four quadrants 

(each 10 x 10). In each of the top left and bottom right quadrants, place 5 

rectangles horizontally. In each of the other two quadrants, place 5 rectangles 

vertically. Now each row intersects 5 vertical rectangles and 1 horizontal. In 

other words, it contains just 6 different numbers. Similarly each column. But any 

given number is in either 10 rows and 2 columns or vice versa, so no number is 

in 3 rows and 3 columns. [None of this is necessary for the solution, but it 

helps to show what is going on.]  

Returning to the 21 x 21 array, assume that an arrangement is possible with no 

integer in at least 3 rows and at least 3 columns. Color a cell white if its integer 

appears in 3 or more rows and black if its integer appears in only 1 or 2 rows. 

We count the white and black squares.  

Each row has 21 cells and at most 6 different integers. 6 x 2 < 21, so every row 

includes an integer which appears 3 or more times and hence in at most 2 

rows. Thus at most 5 different integers in the row appear in 3 or more rows. 

Each such integer can appear at most 2 times in the row, so there are at most 5 

x 2 = 10 white cells in the row. This is true for every row, so there are at most 

210 white cells in total.  

Similarly, any given column has at most 6 different integers and hence at least 

one appears 3 or more times. So at most 5 different integers appear in 2 rows 

or less. Each such integer can occupy at most 2 cells in the column, so there 

are at most 5 x 2 = 10 black cells in the column. This is true for every column, 

so there are at most 210 black cells in total.  

This gives a contradiction since 210 + 210 < 441.  

Comment. This looks easy, but (like question 6) I found it curiously difficult (it 
took me well over 2 hours). For a while I could not see how to do better than a 
12 x 12 array (with 2 rows of 1s, then 2 rows of 2s etc), which was disorienting. 
Then I got the argument almost right, but not quite right, which took more time.  

The original question was phrased in terms of 21 boys and 21 girls in a 
competition with an unknown number of problems. Each boy, girl pair solved at 
least one problem. Each competitor solved at most 6 problems. One had to 
show that some problem was solved by at least 3 boys and at least 3 girls. The 
recasting in the terms above is almost immediate.  
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Equally, one can easily recast the solution above into the competition format. 
Take any boy B0. At least one of the questions he attempts must be attempted 
by 3 or more girls (because he attempts at most 6 questions and there are more 
than 6x2 girls). Hence he attempts at most 5 questions which are only 
attempted by less than 3 girls. So at most 5 x 2 = 10 of the 21 pairs (B0, G) 
attempt a question attempted by less than 3 girls. So at most 210 of the 441 
pairs pairs (B, G) attempt such a question. Similarly, at most 210 pairs (B, G) 
attempt a question attempted by less than 3 boys. Hence at least 21 pairs (B, 
G) attempt a question attempted by 3 or more girls and 3 or more boys. So 
there must be at least one such question.  

Note that the arguments above generalise immediately to show that in a 4N+1 
by 4N+1 array with at most N+1 different integers in each row and column, there 
is some integer that appears in at least 3 rows and 3 columns, but this is not 
true for a 4N by 4N array.  

B1 

This is a simple application of the pigeon hole principle.  

The sum of all m! distinct residues mod m! is not divisible by m! because m! is 

even (since m > 1). [The residues come in pairs a and m! - a, except for 

m!/2.].  

However, the sum of all f(x) as x ranges over all m! permutations is 1/2 (m+1)! 

∑ ni, which is divisible by m! (since m+1 is even). So at least one residue must 

occur more than once among the f(x).  

B2  

Answer  

Answer: 80o.  

Solution  

This is an inelegant solution, but I did get it fast! Without loss of generality we 

can take length AB = 1. Take angle ABY = x. Note that we can now solve the 

two triangles AXB and AYB. In particular, using the sine rule, BX = sin 

30o/sin(150o-2x), AY = sin x/sin(120o-x), YB = sin 60o/sin(120o-x). So we have 

an equation for x.  

Using the usual formula for sin(a + b) etc, and writing s = sin x, c = cos x, we 

get: 2√3 s2c - 4sc - 2√3 c3 + 2√3 c2 + 6sc - 2s - √3 = 0 or -√3 (4c3 - 2c2 - 2c 

+ 1) = 2s(2c2 -3c + 1). This has a common factor 2c - 1. So c = 1/2 or -√3 

(2c2 - 1) = 2s(c - 1) (*).  

160



c = 1/2 means x = 60o or angle B = 120o. But in that case the sides opposite A 

and B are parallel and the triangle is degenerate (a case we assume is 

disallowed). So squaring (*) and using s2 = 1 - c2, we get: 16c4 - 8c3 - 12c2 + 

8c - 1 = 0. This has another factor 2c - 1. Dividing that out we get: 8c3 - 6c + 

1 = 0. But we remember that 4c3 - 3c = cos 3x, so we conclude that cos 3x = -

1/2. That gives x = 40o, 80o, 160o, 200o, 280o, 320o. But we require that x < 60o 

to avoid degeneracy. Hence the angle B = 2x = 80o.  

I subsequently found this geometric solution on the official Wolfram site 
(Wolfram was one of the sponsors of IMO 2001). I cannot say it is much easier, 
but at least it is geometric.  

Extend AB to X' with BX' = BX. Extend AY to Z with YZ = YB. Then AZ = AY + YZ 

= AY + YB = AB + BX = AB + BX' = AX'. Angle A = 60o, so AZX' is equilateral.  

Use B also to denote the angle at B. Then angle YBX = B/2. Also angle BXX' + 

angle BX'X = B. The triangle is isosceles by construction, so angle BX'X = B/2. 

Hence angle XX'Z = 60o - B/2. X lies on the bisector of A and AZ = AX', so XZ 

= XX'. Hence XZX' = 60o - B/2 also. But angle Z = 60o, so angle YZX = B/2 = 

angle YBX.  

Now YZ = YB, so angle YZB = angle YBZ. Hence angle XZB = angle XBX (they 

are the difference of pairs of equal angles). If X does not lie on BZ, then we can 

conclude that XB = XZ.  

In that case, since XZ = XX', we have XB = XX'. But already XB = BX' (by 

construction), so BXX' is equilateral and hence B/2 = 60o. But then angle B + 

angle A = 180o, so the triangle ABC is degenerate (with C at infinity), which we 

assume is disallowed. Hence X must lie on BZ, which means Z = C and angle B 

= 2 angle C. Hence angle B = 80, angle C = 40.    

B3  

Note first that KL+MN > KM+LN > KN+LM, because (KL+MN) - (KM+LN) = (K - 

N)(L - M) > 0 and (KM+LN) - (KN+LM) = (K - L)(M - N) > 0.  

Multiplying out and rearranging, the relation in the question gives K2 - KM + M2 

= L2 + LN + N2. Hence (KM + LN)(L2 + LN + N2) = KM(L2 + LN + N2) + LN(K2 - 

KM + M2) = KML2 + KMN2 + K2LN + LM2N = (KL + MN)(KN + LM). In other words 

(KM + LN) divides (KL + MN)(KN + LM).  

Now suppose KL + MN is prime. Since it greater than KM + LN, it can have no 

common factors with KM + LN. Hence KM + LN must divide the smaller integer 

KN + LM. Contradiction.  
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Comment. This looks easy, but in fact I found it curiously difficult. It is easy to 
go around in circles getting nowhere. Either I am getting older, or this is harder 
than it looks!  

Note that it is not hard to find K, L, M, N satisfying the condition in the question. 
For example 11, 9, 5, 1.  

 

IMO 2002 
A1 

Let ai be the number of blue members (h, k) in S with h = i, and let bi be the 

number of blue members (h, k) with k = i. It is sufficient to show that b0, b1, ... , 

bn-1 is a rearrangement of a0, a1, ... , an-1 (because the number of type 1 

subsets is the product of the ai and the number of type 2 subsets is the product 

of the bi).  

Let ci be the largest k such that (i, k) is red. If (i, k) is blue for all k then we put 

ci = -1. Note that if i < j, then ci ≥ cj, since if (j, ci ) is red, then so is (i, ci ). 

Note also that (i, k) is red for k ≤ ci, so the sequence c0, c1, ... , cn-1 completely 

defines the coloring of S.  

Let Si be the set with the sequence c0, c1, ... , ci, -1, ... , -1, so that Sn-1 = S. 

We also take S-1 as the set with the sequence -1, -1, ... , -1, so that all its 

members are blue. We show that the rearrangement result is true for S-1 and 

that if it is true for Si then it is true for Si+1. It is obvious for S-1, because both ai 

and bi are n, n-1, ... , 2, 1. So suppose it is true for Si (where i < n-1). The only 

difference between the aj for Si and for Si+1 is that ai+1 = n-i-1 for Si and (n-i-

1)-(ci+1+1) for Si+1. In other words, the number n-i-1 is replaced by the number 

n-i-c-2, where c = ci+1. The difference in the bj is that 1 is deducted from each 

of b0, b1, ... , bc. But these numbers are just n-i-1, n-i-1, n-i-2, ... , n-i-c-1. 

So the effect of deducting 1 from each is to replace n-i-1 by n-i-c-2, which is 

the same change as was made to the aj. So the rearrangement result also holds 

for Si+1. Hence it holds for S.  

A2 

F is equidistant from A and O. But OF = OA, so OFA is equilateral and hence 

angle AOF = 60o. Since angle AOC > 60o, F lies between A and C. Hence the 

ray CJ lies between CE and CF.  

D is the midpoint of the arc AB, so angle DOB = ½ angle AOB = angle ACB. 

Hence DO is parallel to AC. But OJ is parallel to AD, so AJOD is a 

parallelogram. Hence AJ = OD. So AJ = AE = AF, so J lies on the opposite side 

of EF to A and hence on the same side as C. So J must lie inside the triangle 

CEF.  
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Also, since EF is the perpendicular bisector of AO, we have AE = AF = OE, so A 

is the center of the circle through E, F and J. Hence angle EFJ = ½ angle EAJ. 

But angle EAJ = angle EAC (same angle) = angle EFC. Hence J lies on the 

bisector of angle EFC.  

Since EF is perpendicular to AO, A is the midpoint of the arc EF. Hence angle 

ACE = angle ACF, so J lies on the bisector of angle ECF. Hence J is the 

incenter.  

Many thanks to Dirk Laurie for pointing out that the original version of this 
solution failed to show the relevance of angle AOC > 60o. According to the 
official marking scheme, one apparently lost a mark for failing to show J lies 
inside CEF.  

A3 

Answer: m = 5, n = 3.  

Obviously m > n. Take polynomials q(x), r(x) with integer coefficients and with 

degree r(x) < n such that xm + x - 1 = q(x) (xn + x2 - 1) + r(x). Then xn + x2 - 1 

divides r(x) for infinitely many positive integers x. But for sufficiently large x, xn 

+ x2 - 1 > r(x) since r(x) has smaller degree. So r(x) must be zero. So xm + x - 1 

factorises as q(x) (xn + x2 - 1), where q(x) = xm-n + am-n-1x
m-n-1 + ... + a0.  

At this point I use an elegant approach provided by Jean-Pierre Ehrmann  

We have (xm + x - 1) = xm-n(xn + x2 - 1) + (1 - x)(xm-n+1 + xm-n - 1), so (xn + x2 

- 1) must divide (xm-n+1 + xm-n - 1). So, in particular, m ≥ 2n-1. Also (xn + x2 - 

1) must divide (xm-n+1 + xm-n - 1) - xm-2n+1(xn + x2 - 1) = xm-n - xm-2n+3 + xm-2n+1 

- 1 (*).  

At this point there are several ways to go. The neatest is Bill Dubuque's:  

(*) can be written as xm-2n+3(xn-3 - 1) + (xm-(2n-1) - 1) which is < 0 for all x in (0, 

1) unless n - 3 = 0 and m - (2n - 1) = 0. So unless n = 3, m = 5, it is has no 

roots in (0, 1). But xn + x2 - 1 (which divides it) has at least one becaause it is 

-1 at x = 0 and +1 at x = 1. So we must have n = 3, m = 5. It is easy to check 

that in this case we have an identity.  

Two alternatives follow. Jean-Pierre Ehrmann continued:  

If m = 2n-1, (*) is xn-1 - x2. If n = 3, this is 0 and indeed we find m = 5, n = 3 

gives an identity. If n > 3, then it is x2(xn-3 - 1). But this has no roots in the 

interval (0, 1), whereas xn + x2 - 1 has at least one (because it is -1 at x = 0 

and +1 at x = 1), so xn + x2 - 1 cannot be a factor.  
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If m > 2n-1, then (*) has four terms and factorises as (x - 1)(xm-n-1 + xm-n-2 + 

... + xm-2n+3 + xm-2n + xm-2n-1 + ... + 1). Again, this has no roots in the interval 

(0, 1), whereas xn + x2 - 1 has at least one, so xn + x2 - 1 cannot be a factor.  

François Lo Jacomo, having got to xn + x2 - 1 divides xm-n+1 + xm-n - 1 and 
looking at the case m -n + 1 > n, continues:  

xn + x2 - 1 has a root r such that 0 < r < 1 (because it is -1 at x = 0 and +1 at x 

= 1). So rn = 1 - r2. It must also be a root of xm + x - 1, so 1 - r = rm ≤ r2n = (1 

- r2)2. Hence (1 - r2)2 - (1 - r) = (1 - r) r (1 - r - r2) ≥ 0, so 1 - r - r2 ≥ 0. 

Hence rn = 1 - r2 ≥ r, which is impossible.  

Many thanks to Carlos Gustavo Moreira for patiently explaining why the brute 
force approach of calculating the coefficients of q(x), starting at the low end, is 
full of pitfalls. After several failed attempts, I have given up on it!  

B1 

dk+1-m <= n/m. So d < n2(1/(1.2) + 1/(2.3) + 1/(3.4) + ... ). The inequality is 

certainly strict because d has only finitely many terms. But 1/(1.2) + 1/(2.3) + 

1/(3.4) + ... = (1/1 - 1/2) + (1/2 - 1/3) + (1/3 - 1/4) + ... = 1. So d < n2.  

Obviously d divides n2 for n prime. Suppose n is composite. Let p be the 

smallest prime dividing n. Then d > n2/p. But the smallest divisor of n2 apart 

from 1 is p, so if d divides n2, then d ≤ n2/p. So d cannot divide n2 for n 

composite.  

B2 

Answer: there are three possible functions: (1) f(x) = 0 for all x; (2) f(x) = 1/2 for 

all x; or (3) f(x) = x2.  

Put x = y = 0, u = v, then 4 f(0) f(u) = 2 f(0). So either f(u) = 1/2 for all u, or f(0) 

= 0. f(u) = 1/2 for all u is certainly a solution. So assume f(0) = 0.  

Putting y = v = 0, f(x) f(u) = f(xu) (*). In particular, taking x = u = 1, f(1)2 = f(1). 

So f(1) = 0 or 1. Suppose f(1) = 0. Putting x = y = 1, v = 0, we get 0 = 2f(u), so 

f(x) = 0 or all x. That is certainly a solution. So assume f(1) = 1.  

Putting x = 0, u = v = 1 we get 2 f(y) = f(y) + f(-y), so f(-y) = f(y). So we need 

only consider f(x) for x positive. We show next that f(r) = r2 for r rational. The 

first step is to show that f(n) = n2 for n an integer. We use induction on n. It is 

true for n = 0 and 1. Suppose it is true for n-1 and n. Then putting x = n, y = u 

= v = 1, we get 2f(n) + 2 = f(n-1) + f(n+1), so f(n+1) = 2n2 + 2 - (n-1)2 = 

(n+1)2 and it is true for n+1. Now (*) implies that f(n) f(m/n) = f(m), so f(m/n) = 

m2/n2 for integers m, n. So we have established f(r) = r2 for all rational r.  

164



From (*) above, we have f(x2) = f(x)2 ≥ 0, so f(x) is always non-negative for 

positive x and hence for all x. Putting u = y, v = x, we get ( f(x) + f(y) )2 = f(x2 + 

y2), so f(x2 + y2) = f(x)2 + 2f(x)f(y) + f(y)2 ≥ f(x)2 = f(x2). For any u > v > 0, we 

may put u = x2 + y2, v = x2 and hence f(u) ≥ f(v). In other words, f is an 

increasing function.  

So for any x we may take a sequence of rationals rn all less than x we converge 

to x and another sequence of rationals sn all greater than x which converge to x. 

Then rn
2 = f(rn) ≤ f(x) ≤ f(sn) = sn

2 for all x and hence f(x) = x2.  

B3 

Denote the circle center Oi by Ci. The tangents from O1 to Ci contain an angle 

2x where sin x = 1/O1Oi. So 2x > 2/O1Oi. These double sectors cannot overlap, 

so ∑ 2/O1Oi < π. Adding the equations derived from O2, O3, ... we get 4 ∑ OiOj < 

nπ, so ∑ OiOj < nπ/4, which is not quite good enough.  

There are two key observations. The first is that it is better to consider the angle 

OiO1Oj than the angle between the tangents to a single circle. It is not hard to 

show that this angle must exceed both 2/O1Oi and 2/O1Oj. For consider the two 

common tangents to C1 and Ci which intersect at the midpoint of O1Oi. The 

angle between the center line and one of the tangents is at least 2/O1Oi. No 

part of the circle Cj can cross this line, so its center Oj cannot cross the line 

parallel to the tangent through O1. In other word, angle OiO1Oj is at least 2/O1Oi. 

A similar argument establishes it is at least 2/O1Oj.  

Now consider the convex hull of the n points Oi. m ≤ n of these points form the 

convex hull and the angles in the convex m-gon sum to (m-2)π. That is the 

second key observation. That gains us not one but two amounts π/4. However, 

we lose one back. Suppose O1 is a vertex of the convex hull and that its angle 

is θ1. Suppose for convenience that the rays O1O2, O1O3, ... , O1On occur in that 

order with O2 and On adjacent vertices to O1 in the convex hull. We have that 

the n-2 angles between adjacent rays sum to θ1. So we have ∑ 2/O1Oi < θ1, 

where the sum is taken over only n-2 of the i, not all n-1. But we can choose 

which i to drop, because of our freedom to choose either distance for each 

angle. So we drop the longest distance O1Oi. [If O1Ok is the longest, then we 

work outwards from that ray. Angle Ok-1O1Ok > 2/O1Ok-1, and angle OkO1Ok+1 > 

2/O1Ok+1 and so on.]  

We now sum over all the vertices in the convex hull. For any centers Oi inside 

the hull we use the ∑j 2/OiOj < π which we established in the first paragraph, 

where the sum has all n-1 terms. Thus we get ∑i,j 2/OiOj < (n-2)π, where for 

vertices i for which Oi is a vertex of the convex hull the sum is only over n-2 

values of j and excludes 2/OiOmax i where Omax idenotes the furthest center from 

Oi.  
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Now for Oi a vertex of the convex hull we have that the sum over all j, ∑ 2/OiOj, 

is the sum Σ' over all but j = max i plus at most 1/(n-2) Σ'. In other words we 

must increase the sum by at most a factor (n-1)/(n-2) to include the missing 

term. For Oi not a vertex of the hull, obviously no increase is needed. Thus the 

full sum ∑i,j 2/OiOj < (n-1)π. Hence ∑i<j 1/OiOj < (n-1)π/4 as required.  

 

IMO 2003 
A1 

Thanks to Li Yi  

Having found x1, x2, ... , xk there are k·101·100 forbidden values for xk+1 of the 

form xi + am - an with m and n unequal and another k forbidden values with m = 

n. Since 99·101·100 + 99 = 106 - 1, we can successively choose 100 distinct xi.  

Gerhard Woeginger sent me a similar solution  

A2 

Answer 

(m, n) = (2k, 1), (k, 2k) or (8k4 - k, 2k)  

Solution 

Thanks to Li Yi  

The denominator is 2mn2 - n3 + 1 = n2(2m - n) + 1, so 2m >= n > 0. If n = 1, 

then m must be even, in other words, we have the solution (m, n) = (2k, 1).  

So assume n > 1. Put h = m2/(2mn2 - n3 + 1). Then we have a quadratic 

equation for m, namely m2 - 2hn2m + (n3 - 1)h = 0. This has solutions hn2 +- 

N, where N is the positive square root of h2n4 - hn3 + h. Since n > 1, h ≥ 1, N is 

certainly real. But the sum and product of the roots are both positive, so both 

roots must be positive. The sum is an integer, so if one root is a positive 

integer, then so is the other.  

The larger root hn2 + N is greater than hn2, so the smaller root < h(n3 - 1)/(hn2) 

< n. But note that if 2m - n > 0, then since h > 0, we must have the 

denominator (2m - n)n2 + 1 smaller than the numerator and hence m > n. So for 

the smaller root we cannot have 2m - n > 0. But 2m - n must be non-negative 

(since h is positive), so 2m - n = 0 for the smaller root. Hence hn2 - N = n/2. 

Now N2 = (hn2 - n/2)2 = h2n4 - hn3 + h, so h = n2/4. Thus n must be even. Put n 

= 2k and we get the solutions (m, n) = (k, 2k) and (8k4 - k, 2k).  
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We have shown that any solution must be of one of the three forms given, but it 

is trivial to check that they are all indeed solutions.  

A3 

Thanks to Li Yi  

We use bold to denote vectors, so AB means the vector from A to B. We take 

some arbitrary origin and write the vector OA as A for short. Note that the vector 

to the midpoint of AB is (A + B)/2, so the vector from the midpoint of DE to the 

midpoint of AB is (A + B - D - E)/2. So the starting point is |A + B - D - E| ≥ 
√3 ( |A - B| + |D - E| ) and two similar equations. The key is to notice that by 

the triangle inequality we have |A - B| + |D - E| ≥ |A - B - D + E| with 

equality iff the opposite sides AB and DE are parallel. Thus we get |DA + EB| ≥ 
√3 |DA - EB|. Note that DA and EB are diagonals. Squaring, we get DA2 + 2 

DA.EB + EB2 ≥ 3(DA2 - 2 DA.EB + EB2), or DA2 + EB2 ≤ 4 DA.EB. Similarly, we 

get EB2 + FC2 ≤ 4 EB.FC and FC2 + AD2 ≤ 4 FC.AD = - 4 FC.DA. Adding the 

three equations gives 2(DA - EB + FC)2 ≤ 0. So it must be zero, and hence DA 

- EB + FC = 0 and opposite sides of the hexagon are parallel.  

Note that DA - EB + FC = A - D - B + E + C - F = BA + DC + FE. So BA + DC + 

FE = 0. In other words, the three vectors can form a triangle.  

Since EF is parallel to BC, if we translate EF along the vector ED we get CG, an 

extension of BC. Similarly, if we translate AB along the vector BC we get an 

extension of ED. Since BA, DC and FE form a triangle, AB must translate to DG. 

Thus HAB and CDG are congruent. Similarly, if we take AF and DE to intersect 

at I, the triangle FIE is also congruent (and similarly oriented) to HAB and CDG. 

Take J, K as the midpoints of AB, ED. HIG and HAB are equiangular and hence 

similar. IE = DG and K is the midpoint of ED, so K is also the midpoint of IG. 

Hence HJ is parallel to HK, so H, J, K are collinear.  

Hence HJ/AB = HK/IG = (HK - HJ)/(IG - AB) = JK/(AB + ED) = ½ √3. Similarly, 

each of the medians of the triangle HAB is ½ √3 times the corresponding side. 

We will show that this implies it is equilateral. The required result then follows 

immediately.  

Suppose a triangle has side lengths a, b, c and the length of the median to the 

midpoint of side length c is m. Then applying the cosine rule twice we get m2 = 

a2/2 + b2/2 - c2/4. So if m2 = ¾ c2, it follows that a2 + b2 = 2c2. Similarly, b2 + 

c2 = 2a2. Subtracting, a = c. Similarly for the other pairs of sides.  

An alternative (and rather more elegant) solution sent my some anonymous 
contestants at the IMO is as follows  

Let the diagonals AD and BE meet at P. We show that angle APB <= 60o. 

Suppose angle APB > 60o. Take X and Y inside the hexagon so that ABX and 
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DEY are equilateral (as shown). Then since angle APB > angle AXB, P lies 

inside the circumcircle of ABX (which we take to have center O, radius r). 

Similarly, it lies inside the circumcircle of DEY (which we take to have center O' 

radius r'), so these circles must meet and hence OO' < r + r'. Now √3 (AB + 

DE)/2 = MN (where M, N are the midpoints of AB, DE) ≤ MO + OO' + O'N < r/2 

+ (r + r') + r'/2 = (3/2)(r + r') = √3 (AB + DE)/2. Contradiction.  

The same argument applies to any two long diagonals. Hence the angles must 

all be 60o. Also we must have MP ≤ MX with equality iff P = X, and similarly NP ≤ 
NY with equality iff P = Y. So MN ≤ MP + PN ≤ MX + NY = √3 (AB + DE)/2 = MN. 

Hence we have equality and so P = X = Y.  

Hence angle APB = 60o. Suppose AD and CF meet at Q. The same argument 

shows that angle AQF = 60o. So the hexagon angle at A is angle APB + angle 

AQF = 120o. Similarly for the other angles.  

Finally, note that the only possible configuration is:  

The ratio AB/BC is arbitrary, but the figure is symmetrical under rotations 

through 120o. That follows immediately from either of the two solutions above.  

B1  

Thanks to Li Yi  

APRD is cyclic with diameter AD (because angle APD = angle ARD = 90o. 

Suppose its center is O and its radius r. Angle PAR = ½ angle POR, so PR = 2r 

sin ½POR = AD sin PAR. Similarly, RQ = CD sin RCQ. (Note that it makes no 

difference if R, P are on the same or opposite sides of the line AD.) But sin PAR 

= sin BAC, sin RCQ = sin ACB, so applying the sine rule to the triangle ABC, sin 

RCQ/sin PAR = AB/BC. Thus we have AD/CD = (PR/RQ) (AB/BC). Suppose the 

angle bisectors of B, D meet AD at X, Y. Then we have AB/BC = AX/CX and 

AD/CD = AY/CY. Hence (AY/CY)/(AX/CX) = PR/RQ. So PR = RQ iff X = Y, which 

is the required result.  

Note that ABCD does not need to be cyclic! Exercise: does it need to be 
convex?  

B2 

Thanks to Li Yi  

Notice first that if we restrict the sums to i < j, then they are halved. The lhs sum 

is squared and the rhs sum is not, so the the desired inequality with sums 

restricted to i < j has (1/3) on the rhs instead of (2/3).  
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Consider the sum of all |xi - xj| with i < j. x1 occurs in (n-1) terms with a 

negative sign. x2 occurs in one term with a positive sign and (n-2) terms with a 

negative sign, and so on. So we get -(n-1)x1 - (n-3)x2 - (n-5)x3 - ... + (n-1)xn 

= ∑ (2i-1-n)xi.  

We can now apply Cauchy-Schwartz. The square of this sum is just ∑ xi
2 ∑ (2i-

1-n)2.  

Looking at the other side of the desired inequality, we see immediately that it is 

n ∑ xi
2 - (∑ xi)

2. We would like to get rid of the second term, but that is easy 

because if we add h to every xi the sums in the desired inequality are 

unaffected (since they use only differences of xi), so we can choose h so that ∑ 

xi is zero. Thus we are home if we can show that ∑ (2i-1-n)2 ≤ n(n2 - 1)/3. That 

is easy: lhs = 4 ∑ i2 - 4(n+1) ∑ i + n(n+1)2 = (2/3)n(n+1)(2n+1) - 2n(n+1) + 

n(n+1)2 = (1/3)n(n+1)(2(2n+1) - 6 + 3(n+1) ) = (1/3)n(n2 - 1) = rhs. That 

establishes the required inequality.  

We have equality iff we have equality at the Cauchy-Schwartz step and hence 

iff xi is proportional to (2i-1-n). That implies that xi+1 - xi is constant. So 

equality implies that the sequence is an AP. But if the sequence is an AP with 

difference d (so xi+1 = xi + d) and we take x1 = -(d/2)(n-1), then we get xi = 

(d/2)(2i-1-n) and ∑ xi = 0, so we have equality.  

B3 

Since ( pp -1 )/ ( p -1)=1+p+p²++pp-1  p+1(mod p2), we can get at least one 

prime divisor of ( pp -1 )/ ( p -1)which is not congruent to 1 modulo p2. Denote 

such a prime divisor by q . This q is what we wanted. The proof is as follows. 

Assume that there exists an integer n such that np p (mod q). Then we have 

np2 pp1(mod q)by the definition of q. On the other hand, from Fermat’s little 

theorem, n p-11(mod q) because q is a prime. Since p²(mod q-1), we have 
(p²,q-1)p, which leads to np1(mod q). Hence we have p1(mod q). However, 

this implies 1+p+p²++pp-1 p (mod q). From the definition of q, this leads to 
p0(mod q), a contradiction. 
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12 Julie 2006

Probleem 1. Laat I die middelpunt van die ingeskrewe sirkel van 4ABC wees, en P
’n punt binne die driehoek sodat

PB̂A + PĈA = PB̂C + PĈB.

Bewys dat:

• AP > AI;

• gelykheid geld as en slegs as P = I.

Probleem 2. Gegee ’n reëlmatige 2006-hoek P . ’n Diagonaal van P word goed genoem
as sy eindpunte die rand van P in twee dele verdeel wat elk uit ’n onewe aantal sye van
P bestaan. Die sye van P word ook goed genoem.

Nou word P opgedeel in driehoeke deur 2003 diagonale, waarvan geen twee ’n gemeen-
skaplike punt binne P het nie. Vind die grootste aantal gelykbenige driehoeke met twee
goeie sye wat op hierdie wyse kan ontstaan.

Probleem 3. Bepaal die kleinste reële getal M waarvoor die ongelykheid∣∣ ab(a2 − b2) + bc(b2 − c2) + ca(c2 − a2)
∣∣ 6 M(a2 + b2 + c2)2

vir alle reële getalle a, b en c geld.

Toegelate tyd: 4 uur 30 minute
Elke probleem tel 7 punte

language: Afrikaans

day: 1

47th International Mathematical Olympiad

Slovenia 2006

Problems with Solutions
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Solutions

Problem 1.

Let ABC be a triangle with incentre I. A point P in the interior of the triangle satisfies

∠PBA + ∠PCA = ∠PBC + ∠PCB.

Show that AP ≥ AI, and that equality holds if and only if P = I.

Solution. Let ∠A = α, ∠B = β, ∠C = γ. Since ∠PBA + ∠PCA + ∠PBC + ∠PCB = β + γ, the
condition from the problem statement is equivalent to ∠PBC + ∠PCB = (β + γ)/2, i. e. ∠BPC =
90◦ + α/2.

On the other hand ∠BIC = 180◦ − (β + γ)/2 = 90◦ + α/2. Hence ∠BPC = ∠BIC, and since P
and I are on the same side of BC, the points B, C, I and P are concyclic. In other words, P lies on
the circumcircle ω of triangle BCI.

A

I

P

B

C

M

ω

Ω

Let Ω be the circumcircle of triangle ABC. It is a well-known fact that the centre of ω is the
midpoint M of the arc BC of Ω. This is also the point where the angle bisector AI intersects Ω.

From triangle APM we have

AP + PM ≥ AM = AI + IM = AI + PM.

Therefore AP ≥ AI. Equality holds if and only if P lies on the line segment AI, which occurs if and
only if P = I.

Problem 2.

Let P be a regular 2006-gon. A diagonal of P is called good if its endpoints divide the boundary of P
into two parts, each composed of an odd number of sides of P . The sides of P are also called good .
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Suppose P has been dissected into triangles by 2003 diagonals, no two of which have a common
point in the interior of P . Find the maximum number of isosceles triangles having two good sides that
could appear in such a configuration.

Solution 1. Call an isosceles triangle good if it has two odd sides. Suppose we are given a dissection
as in the problem statement. A triangle in the dissection which is good and isosceles will be called
iso-good for brevity.

Lemma. Let AB be one of dissecting diagonals and let L be the shorter part of the boundary of the
2006-gon with endpoints A, B. Suppose that L consists of n segments. Then the number of iso-good
triangles with vertices on L does not exceed n/2.

Proof. This is obvious for n = 2. Take n with 2 < n ≤ 1003 and assume the claim to be true for every
L of length less than n. Let now L (endpoints A, B) consist of n segments. Let PQ be the longest
diagonal which is a side of an iso-good triangle PQS with all vertices on L (if there is no such triangle,
there is nothing to prove). Every triangle whose vertices lie on L is obtuse or right-angled; thus S
is the summit of PQS. We may assume that the five points A,P, S,Q,B lie on L in this order and
partition L into four pieces LAP , LPS, LSQ, LQB (the outer ones possibly reducing to a point).

By the definition of PQ, an iso-good triangle cannot have vertices on both LAP and LQB. Therefore
every iso-good triangle within L has all its vertices on just one of the four pieces. Applying to each
of these pieces the induction hypothesis and adding the four inequalities we get that the number of
iso-good triangles within L other than PQS does not exceed n/2. And since each of LPS, LSQ consists
of an odd number of sides, the inequalities for these two pieces are actually strict, leaving a 1/2 + 1/2
in excess. Hence the triangle PSQ is also covered by the estimate n/2. This concludes the induction
step and proves the lemma. �

The remaining part of the solution in fact repeats the argument from the above proof. Consider
the longest dissecting diagonal XY . Let LXY be the shorter of the two parts of the boundary with
endpoints X, Y and let XY Z be the triangle in the dissection with vertex Z not on LXY . Notice
that XY Z is acute or right-angled, otherwise one of the segments XZ, Y Z would be longer than XY .
Denoting by LXZ , LY Z the two pieces defined by Z and applying the lemma to each of LXY , LXZ ,
LY Z we infer that there are no more than 2006/2 iso-good triangles in all, unless XY Z is one of them.
But in that case XZ and Y Z are good diagonals and the corresponding inequalities are strict. This
shows that also in this case the total number of iso-good triangles in the dissection, including XY Z,
is not greater than 1003.

This bound can be achieved. For this to happen, it just suffices to select a vertex of the 2006-gon
and draw a broken line joining every second vertex, starting from the selected one. Since 2006 is even,
the line closes. This already gives us the required 1003 iso-good triangles. Then we can complete the
triangulation in an arbitrary fashion.

Problem 3.

Determine the least real number M such that the inequality

∣

∣ ab(a2 − b2) + bc(b2 − c2) + ca(c2 − a2)
∣

∣ ≤ M
(

a2 + b2 + c2
)2

holds for all real numbers a, b and c.

Solution. We first consider the cubic polynomial

P (t) = tb(t2 − b2) + bc(b2 − c2) + ct(c2 − t2).

It is easy to check that P (b) = P (c) = P (−b − c) = 0, and therefore

P (t) = (b − c)(t − b)(t − c)(t + b + c),
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since the cubic coefficient is b − c. The left-hand side of the proposed inequality can therefore be
written in the form

|ab(a2 − b2) + bc(b2 − c2) + ca(c2 − a2)| = |P (a)| = |(b − c)(a − b)(a − c)(a + b + c)|.

The problem comes down to finding the smallest number M that satisfies the inequality

|(b − c)(a − b)(a − c)(a + b + c)| ≤ M · (a2 + b2 + c2)2. (1)

Note that this expression is symmetric, and we can therefore assume a ≤ b ≤ c without loss of
generality. With this assumption,

|(a − b)(b − c)| = (b − a)(c − b) ≤
(

(b − a) + (c − b)

2

)2

=
(c − a)2

4
, (2)

with equality if and only if b − a = c − b, i.e. 2b = a + c. Also
(

(c − b) + (b − a)

2

)2

≤ (c − b)2 + (b − a)2

2
,

or equivalently,
3(c − a)2 ≤ 2 · [(b − a)2 + (c − b)2 + (c − a)2], (3)

again with equality only for 2b = a + c. From (2) and (3) we get

|(b − c)(a − b)(a − c)(a + b + c)|

≤ 1

4
· |(c − a)3(a + b + c)|

=
1

4
·
√

(c − a)6(a + b + c)2

≤ 1

4
·

√

(

2 · [(b − a)2 + (c − b)2 + (c − a)2]

3

)3

· (a + b + c)2

=

√
2

2
·





4

√

(

(b − a)2 + (c − b)2 + (c − a)2

3

)3

· (a + b + c)2





2

.

By the weighted AM-GM inequality this estimate continues as follows:

|(b − c)(a − b)(a − c)(a + b + c)|

≤
√

2

2
·
(

(b − a)2 + (c − b)2 + (c − a)2 + (a + b + c)2

4

)2

=
9
√

2

32
· (a2 + b2 + c2)2.

We see that the inequality (1) is satisfied for M = 9

32

√
2, with equality if and only if 2b = a + c and

(b − a)2 + (c − b)2 + (c − a)2

3
= (a + b + c)2.

Plugging b = (a + c)/2 into the last equation, we bring it to the equivalent form

2(c − a)2 = 9(a + c)2.

The conditions for equality can now be restated as

2b = a + c and (c − a)2 = 18b2.

Setting b = 1 yields a = 1− 3

2

√
2 and c = 1+ 3

2

√
2. We see that M = 9

32

√
2 is indeed the smallest con-

stant satisfying the inequality, with equality for any triple (a, b, c) proportional to
(

1 − 3

2

√
2, 1, 1 + 3

2

√
2
)

,
up to permutation.
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Comment. With the notation x = b−a, y = c− b, z = a− c, s = a+ b+ c and r2 = a2 + b2 + c2, the inequality
(1) becomes just |sxyz| ≤ Mr4 (with suitable constraints on s and r). The original asymmetric inequality turns
into a standard symmetric one; from this point on the solution can be completed in many ways. One can e.g.
use the fact that, for fixed values of

∑

x and
∑

x2, the product xyz is a maximum/minimum only if some
of x, y, z are equal, thus reducing one degree of freedom, etc. A specific attraction of the problem is that the
maximum is attained at a point (a, b, c) with all coordinates distinct.

Problem 4.

Determine all pairs (x, y) of integers such that

1 + 2x + 22x+1 = y2.

Solution. If (x, y) is a solution then obviously x ≥ 0 and (x,−y) is a solution too. For x = 0 we get
the two solutions (0, 2) and (0,−2).

Now let (x, y) be a solution with x > 0; without loss of generality confine attention to y > 0. The
equation rewritten as

2x(1 + 2x+1) = (y − 1)(y + 1)

shows that the factors y − 1 and y + 1 are even, exactly one of them divisible by 4. Hence x ≥ 3 and
one of these factors is divisible by 2x−1 but not by 2x. So

y = 2x−1m + ǫ, m odd, ǫ = ±1. (1)

Plugging this into the original equation we obtain

2x
(

1 + 2x+1
)

=
(

2x−1m + ǫ
)2 − 1 = 22x−2m2 + 2xmǫ,

or, equivalently

1 + 2x+1 = 2x−2m2 + mǫ.

Therefore

1 − ǫm = 2x−2(m2 − 8). (2)

For ǫ = 1 this yields m2 − 8 ≤ 0, i.e., m = 1, which fails to satisfy (2).

For ǫ = −1 equation (2) gives us

1 + m = 2x−2(m2 − 8) ≥ 2(m2 − 8),

implying 2m2 − m − 17 ≤ 0. Hence m ≤ 3; on the other hand m cannot be 1 by (2). Because m is
odd, we obtain m = 3, leading to x = 4. From (1) we get y = 23. These values indeed satisfy the
given equation. Recall that then y = −23 is also good. Thus we have the complete list of solutions
(x, y): (0, 2), (0,−2), (4, 23), (4,−23).

Problem 5.

Let P (x) be a polynomial of degree n > 1 with integer coefficients and let k be a positive integer.
Consider the polynomial Q(x) = P (P (. . . P (P (x)) . . .)), where P occurs k times. Prove that there are
at most n integers t such that Q(t) = t.
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Solution. The claim is obvious if every integer fixed point of Q is a fixed point of P itself. For the
sequel assume that this is not the case. Take any integer x0 such that Q(x0) = x0, P (x0) 6= x0 and
define inductively xi+1 = P (xi) for i = 0, 1, 2, . . . ; then xk = x0.

It is evident that

P (u) − P (v) is divisible by u − v for distinct integers u, v. (1)

(Indeed, if P (x) =
∑

aix
i then each ai(u

i − vi) is divisible by u − v.) Therefore each term in the chain
of (nonzero) differences

x0 − x1, x1 − x2, . . . , xk−1 − xk, xk − xk+1 (2)

is a divisor of the next one; and since xk − xk+1 = x0 − x1, all these differences have equal absolute val-
ues. For xm = min(x1, . . . , xk) this means that xm−1 − xm = −(xm − xm+1). Thus xm−1 = xm+1(6= xm).
It follows that consecutive differences in the sequence (2) have opposite signs. Consequently, x0, x1, x2, . . .
is an alternating sequence of two distinct values. In other words, every integer fixed point of Q is a
fixed point of the polynomial P (P (x)). Our task is to prove that there are at most n such points.

Let a be one of them so that b = P (a) 6= a (we have assumed that such an a exists); then a = P (b).
Take any other integer fixed point α of P (P (x)) and let P (α) = β, so that P (β) = α; the numbers α
and β need not be distinct (α can be a fixed point of P ), but each of α, β is different from each of a, b.
Applying property (1) to the four pairs of integers (α, a), (β, b), (α, b), (β, a) we get that the numbers
α − a and β − b divide each other, and also α − b and β − a divide each other. Consequently

α − b = ±(β − a), α − a = ±(β − b). (3)

Suppose we have a plus in both instances: α − b = β − a and α − a = β − b. Subtraction yields
a − b = b − a, a contradiction, as a 6= b. Therefore at least one equality in (3) holds with a minus sign.
For each of them this means that α + β = a + b; equivalently a + b − α − P (α) = 0.

Denote a + b by C. We have shown that every integer fixed point of Q other that a and b is a root
of the polynomial F (x) = C − x − P (x). This is of course true for a and b as well. And since P has
degree n > 1, the polynomial F has the same degree, so it cannot have more than n roots. Hence the
result.

Problem 6.

Assign to each side b of a convex polygon P the maximum area of a triangle that has b as a side and
is contained in P . Show that the sum of the areas assigned to the sides of P is at least twice the area
of P .

Solution 1.

Lemma. Every convex (2n)-gon, of area S, has a side and a vertex that jointly span a triangle of area
not less than S/n.

Proof. By main diagonals of the (2n)-gon we shall mean those which partition the (2n)-gon into two
polygons with equally many sides. For any side b of the (2n)-gon denote by ∆b the triangle ABP
where A,B are the endpoints of b and P is the intersection point of the main diagonals AA′, BB′.
We claim that the union of triangles ∆b, taken over all sides, covers the whole polygon.

To show this, choose any side AB and consider the main diagonal AA′ as a directed segment. Let
X be any point in the polygon, not on any main diagonal. For definiteness, let X lie on the left side
of the ray AA′. Consider the sequence of main diagonals AA′, BB′, CC ′, . . . , where A,B,C, . . . are
consecutive vertices, situated right to AA′.

The n-th item in this sequence is the diagonal A′A (i.e. AA′ reversed), having X on its right side.
So there are two successive vertices K,L in the sequence A,B,C, . . . before A′ such that X still lies
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to the left of KK ′ but to the right of LL′. And this means that X is in the triangle ∆ℓ′ , ℓ′ = K ′L′.
Analogous reasoning applies to points X on the right of AA′ (points lying on main diagonals can be
safely ignored). Thus indeed the triangles ∆b jointly cover the whole polygon.

The sum of their areas is no less than S. So we can find two opposite sides, say b = AB and
b′ = A′B′ (with AA′, BB′ main diagonals) such that [∆b] + [∆b′ ] ≥ S/n, where [· · · ] stands for the
area of a region. Let AA′, BB′ intersect at P ; assume without loss of generality that PB ≥ PB′.
Then

[ABA′] = [ABP ] + [PBA′] ≥ [ABP ] + [PA′B′] = [∆b] + [∆b′ ] ≥ S/n,

proving the lemma. �

Now, let P be any convex polygon, of area S, with m sides a1, . . . , am. Let Si be the area of the
greatest triangle in P with side ai. Suppose, contrary to the assertion, that

m
∑

i=1

Si

S
< 2.

Then there exist rational numbers q1, . . . , qm such that
∑

qi = 2 and qi > Si/S for each i.

Let n be a common denominator of the m fractions q1, . . . , qm. Write qi = ki/n; so
∑

ki = 2n.
Partition each side ai of P into ki equal segments, creating a convex (2n)-gon of area S (with some
angles of size 180◦), to which we apply the lemma. Accordingly, this refined polygon has a side b and
a vertex H spanning a triangle T of area [T ] ≥ S/n. If b is a piece of a side ai of P, then the triangle
W with base ai and summit H has area

[W ] = ki · [T ] ≥ ki · S/n = qi · S > Si,

in contradiction with the definition of Si. This ends the proof.

Solution 2. As in the first solution, we allow again angles of size 180◦ at some vertices of the convex
polygons considered.

To each convex n-gon P = A1A2 . . . An we assign a centrally symmetric convex (2n)-gon Q with

side vectors ±−−−−→
AiAi+1, 1 ≤ i ≤ n. The construction is as follows. Attach the 2n vectors ±−−−−→

AiAi+1 at

a common origin and label them
−→
b1,

−→
b2, . . . ,

−→
b2n in counterclockwise direction; the choice of the first

vector
−→
b1 is irrelevant. The order of labelling is well-defined if P has neither parallel sides nor angles

equal to 180◦. Otherwise several collinear vectors with the same direction are labelled consecutively−→
bj,

−−→
bj+1, . . . ,

−−→
bj+r. One can assume that in such cases the respective opposite vectors occur in the

order −−→
bj ,−

−−→
bj+1, . . . ,−

−−→
bj+r, ensuring that

−−−→
bj+n = −−→

bj for j = 1, . . . , 2n. Indices are taken cyclically
here and in similar situations below.

Choose points B1, B2, . . . , B2n satisfying
−−−−−→
BjBj+1 =

−→
bj for j = 1, . . . , 2n. The polygonal line Q =

B1B2 . . . B2n is closed, since
∑

2n
j=1

−→
bj =

−→
0 . Moreover, Q is a convex (2n)-gon due to the arrangement

of the vectors
−→
bj , possibly with 180◦-angles. The side vectors of Q are ±−−−−→

AiAi+1, 1 ≤ i ≤ n. So

in particular Q is centrally symmetric, because it contains as side vectors
−−−−→
AiAi+1 and −−−−−→

AiAi+1 for
each i = 1, . . . , n. Note that BjBj+1 and Bj+nBj+n+1 are opposite sides of Q, 1 ≤ j ≤ n. We call Q
the associate of P.

Let Si be the maximum area of a triangle with side AiAi+1 in P, 1 ≤ i ≤ n. We prove that

[B1B2 . . . B2n] = 2
n

∑

i=1

Si (1)

and

[B1B2 . . . B2n] ≥ 4 [A1A2 . . . An] . (2)

It is clear that (1) and (2) imply the conclusion of the original problem.
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Lemma. For a side AiAi+1 of P, let hi be the maximum distance from a point of P to line AiAi+1,

i = 1, . . . , n. Denote by BjBj+1 the side of Q such that
−−−−→
AiAi+1 =

−−−−−→
BjBj+1. Then the distance be-

tween BjBj+1 and its opposite side in Q is equal to 2hi.

Proof. Choose a vertex Ak of P at distance hi from line AiAi+1. Let u be the unit vector perpendicular
to AiAi+1 and pointing inside P. Denoting by x · y the dot product of vectors x and y, we have

h = u · −−−→AiAk = u · (−−−−→AiAi+1 + · · · + −−−−−→
Ak−1Ak) = u · (−−−−→AiAi−1 + · · · + −−−−−→

Ak+1Ak).

In Q, the distance Hi between the opposite sides BjBj+1 and Bj+nBj+n+1 is given by

Hi = u · (−−−−−→BjBj+1 + · · · + −−−−−−−−−→
Bj+n−1Bj+n) = u · (−→bj +

−−→
bj+1 + · · · + −−−−→

bj+n−1).

The choice of vertex Ak implies that the n consecutive vectors
−→
bj,

−−→
bj+1, . . . ,

−−−−→
bj+n−1 are precisely−−−−→

AiAi+1, . . . ,
−−−−−→
Ak−1Ak and

−−−−→
AiAi−1, . . . ,

−−−−−→
Ak+1Ak, taken in some order. This implies Hi = 2hi. �

For a proof of (1), apply the lemma to each side of P. If O the centre of Q then, using the notation
of the lemma,

[BjBj+1O] = [Bj+nBj+n+1O] = [AiAi+1Ak] = Si .

Summation over all sides of P yields (1).
Set d(P) = [Q] − 4[P] for a convex polygon P with associate Q. Inequality (2) means that d(P) ≥ 0

for each convex polygon P. The last inequality will be proved by induction on the number ℓ of side
directions of P, i. e. the number of pairwise nonparallel lines each containing a side of P.

We choose to start the induction with ℓ = 1 as a base case, meaning that certain degenerate
polygons are allowed. More exactly, we regard as degenerate convex polygons all closed polygonal
lines of the form X1X2 . . . XkY1Y2 . . . YmX1, where X1,X2, . . . ,Xk are points in this order on a line
segment X1Y1, and so are Ym, Ym−1, . . . , Y1. The initial construction applies to degenerate polygons;
their associates are also degenerate, and the value of d is zero. For the inductive step, consider a convex
polygon P which determines ℓ side directions, assuming that d(P) ≥ 0 for polygons with smaller values
of ℓ.

Suppose first that P has a pair of parallel sides, i. e. sides on distinct parallel lines. Let AiAi+1 and
AjAj+1 be such a pair, and let AiAi+1 ≤ AjAj+1. Remove from P the parallelogram R determined

by vectors
−−−−→
AiAi+1 and

−−−−→
AiAj+1. Two polygons are obtained in this way. Translating one of them by

vector
−−−−→
AiAi+1 yields a new convex polygon P ′, of area [P] − [R] and with value of ℓ not exceeding the

one of P. The construction just described will be called operation A.

R

Aj+1 Aj

Ai Ai+1

P

P ′

Q Q′

The associate of P ′ is obtained from Q upon decreasing the lengths of two opposite sides by
an amount of 2AiAi+1. By the lemma, the distance between these opposite sides is twice the dis-
tance between AiAi+1 and AjAj+1. Thus operation A decreases [Q] by the area of a parallelogram
with base and respective altitude twice the ones of R, i. e. by 4[R]. Hence A leaves the difference
d(P) = [Q] − 4[P] unchanged.

Now, if P ′ also has a pair of parallel sides, apply operation A to it. Keep doing so with the
subsequent polygons obtained for as long as possible. Now, A decreases the number p of pairs of
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parallel sides in P. Hence its repeated applications gradually reduce p to 0, and further applications
of A will be impossible after several steps. For clarity, let us denote by P again the polygon obtained
at that stage.

The inductive step is complete if P is degenerate. Otherwise ℓ > 1 and p = 0, i. e. there are no
parallel sides in P. Observe that then ℓ ≥ 3. Indeed, ℓ = 2 means that the vertices of P all lie on the
boundary of a parallelogram, implying p > 0.

Furthermore, since P has no parallel sides, consecutive collinear vectors in the sequence
(−→
bk

)

(if

any) correspond to consecutive 180◦-angles in P. Removing the vertices of such angles, we obtain a
convex polygon with the same value of d(P).

In summary, if operation A is impossible for a nondegenerate polygon P, then ℓ ≥ 3. In addition,
one may assume that P has no angles of size 180◦.

The last two conditions then also hold for the associate Q of P, and we perform the following con-
struction. Since ℓ ≥ 3, there is a side BjBj+1 of Q such that the sum of the angles at Bj and Bj+1 is
greater than 180◦. (Such a side exists in each convex k-gon for k > 4.) Naturally, Bj+nBj+n+1 is a side
with the same property. Extend the pairs of sides Bj−1Bj, Bj+1Bj+2 and Bj+n−1Bj+n, Bj+n+1Bj+n+2

to meet at U and V , respectively. Let Q′ be the centrally symmetric convex 2(n+1)-gon obtained
from Q by inserting U and V into the sequence B1, . . . , B2n as new vertices between Bj , Bj+1

and Bj+n, Bj+n+1, respectively. Informally, we adjoin to Q the congruent triangles BjBj+1U and
Bj+nBj+n+1V . Note that Bj , Bj+1, Bj+n and Bj+n+1 are kept as vertices of Q′, although BjBj+1

and Bj+nBj+n+1 are no longer its sides.

Let AiAi+1 be the side of P such that
−−−−→
AiAi+1 =

−−−−−→
BjBj+1 =

−→
bj . Consider the point W such that

triangle AiAi+1W is congruent to triangle BjBj+1U and exterior to P. Insert W into the sequence
A1, A2, . . . , An as a new vertex between Ai and Ai+1 to obtain an (n+1)-gon P ′. We claim that P ′ is
convex and its associate is Q′.

W

Ai+2Ai+1

Ai

Ai−1

P Q

Bj+1

Bj Bj+n+1

V

Bj+n

U

Vectors
−−−→
AiW and

−−→
bj−1 are collinear and have the same direction, as well as vectors

−−−−→
WAi+1

and
−−→
bj+1. Since

−−→
bj−1,

−→
bj ,

−−→
bj+1 are consecutive terms in the sequence

(−→
bk

)

, the angle inequalities

∠(
−−→
bj−1,

−→
bj) ≤ ∠(

−−−−→
Ai−1Ai,

−→
bj) and ∠(

−→
bj ,

−−→
bj+1) ≤ ∠(

−→
bj,

−−−−−−→
Ai+1Ai+2) hold true. They show that P ′ is a

convex polygon. To construct its associate, vectors ±−−−−→
AiAi+1 = ±−→

bj must be deleted from the defining

sequence
(−→
bk

)

of Q, and the vectors ±−−−→
AiW , ±−−−−→

WAi+1 must be inserted appropriately into it. The

latter can be done as follows:

. . . ,
−−→
bj−1,

−−−→
AiW,

−−−−→
WAi+1,

−−→
bj+1, . . . , −−−→

bj−1, −−−−→
AiW, −−−−−→

WAi+1, −−−→
bj+1, . . . .

This updated sequence produces Q′ as the associate of P ′.
It follows from the construction that [P ′] = [P] + [AiAi+1W ] and [Q′] = [Q] + 2[AiAi+1W ]. There-

fore d(P ′) = d(P) − 2[AiAi+1W ] < d(P).
To finish the induction, it remains to notice that the value of ℓ for P ′ is less than the one for P.

This is because side AiAi+1 was removed. The newly added sides AiW and WAi+1 do not introduce
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new side directions. Each one of them is either parallel to a side of P or lies on the line determined
by such a side. The proof is complete.
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1 Introduction
This section will start with some basic facts and exercises. Frequent users of this discipline can just
skim over the notation and take a look at formulas that talk about generalities in which the theorems
will be shown.
The reason for starting with basic principles is the intention to show that the theory is simple

enough to be completely derived on 20 pages without using any high-level mathematics. If you take
a look at the first theorem and compare it with some scary inequality already mentioned in the table
of contents, you will see how huge is the path that we will bridge in so few pages. And that will
happen on a level accessible to a beginning high-school student. Well, maybe I exaggerated in the
previous sentence, but the beginning high-school student should read the previous sentence again
and forget about this one.

Theorem 1. If x is a real number, then x2 ≥ 0. The equality holds if and only if x = 0.

No proofs will be omitted in this text. Except for this one. We have to acknowledge that this
is very important inequality, everything relies on it, ..., but the proof is so easy that it makes more
sense wasting the space and time talking about its triviality than actually proving it. Do you know
how to prove it? Hint: ”A friend of my friend is my friend”; ”An enemy of my enemy is my friend”.
It might be useful to notice that ”An enemy of my friend is my enemy” and ”A friend of my enemy
is my enemy”, but the last two facts are not that useful for proving theorem 1.
I should also write about the difference between ”≥” and ”>”; that something weird happens

when both sides of an inequality are multiplied by a negative number, but I can’t imagine myself
doing that. People would hate me for real.
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Theorem 2. If a,b ∈ R then:

a2+b2 ≥ 2ab. (1)

The equality holds if and only if a= b.

Proof. After subtracting 2ab from both sides the inequality becomes equivalent to (a−b)2 ≥ 0,
which is true according to theorem 1. �

Problem 1. Prove the inequality a2+b2+ c2 ≥ ab+bc+ ca, if a,b,c are real numbers.

Solution. If we add the inequalities a2+ b2 ≥ 2ab, b2+ c2 ≥ 2bc, and c2+ a2 ≥ 2ca we get
2a2+2b2+2c2 ≥ 2ab+2bc+2ca, which is equivalent to what we are asked to prove. �

Problem 2. Find all real numbers a,b,c, and d such that

a2+b2+ c2+d2 = a(b+ c+d).

Solution. Recall that x2+ y2 ≥ 2xy, where the equality holds if and only if x= y. Applying this
inequality to the pairs of numbers (a/2,b), (a/2,c), and (a/2,d) yields:

a2

4
+b2 ≥ ab, a

2

4
+ c2 ≥ ac, a

2

4
+d2 ≥ ad.

Note also that a2/4 > 0. Adding these four inequalities gives us a2+ b2+ c2+ d2 ≥ a(b+ c+ d).
Equality can hold only if all the inequalities were equalities, i.e. a2 = 0, a/2= b, a/2= c, a/2= d.
Hence a= b= c= d = 0 is the only solution of the given equation. �

Problem 3. If a,b,c are positive real numbers that satisfy a2+b2+ c2 = 1, find the minimal value
of

S=
a2b2

c2
+
b2c2

a2
+
c2a2

b2
.

Solution. If we apply the inequality x2+ y2 ≥ 2xy to the numbers x=
ab
c
and y=

bc
a
we get

a2b2

c2
+
b2c2

a2
≥ 2b2. (2)

Similarly we get

b2c2

a2
+
c2a2

b2
≥ 2c2, and (3)

c2a2

b2
+
a2b2

c2
≥ 2a2. (4)

Summing up (2), (3), and (4) gives 2
(

a2b2
c2 + b2c2

a2 + c2a2
b2

)

≥ 2(a2+b2+ c2) = 2, hence S ≥ 1. The

equality holds if and only if
ab
c

=
bc
a

=
ca
b
, i.e. a= b= c=

1√
3
. �
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Problem 4. If x and y are two positive numbers less than 1, prove that

1
1− x2 +

1
1− y2 ≥

2
1− xy .

Solution. Using the inequality a+b≥ 2
√
abwe get 1

1−x2 + 1
1−y2 ≥

2√
(1−x2)(1−y2)

. Nowwe notice

that (1−x2)(1−y2) = 1+x2y2−x2−y2≤ 1+x2y2−2xy= (1−xy)2 which implies 2√
(1−x2)(1−y2)

≥
2

1−xy and this completes the proof. �
Since the main focus of this text is to present some more advanced material, the remaining

problems will be harder then the ones already solved. For those who want more of the introductory-
type problems, there is a real hope that this website will soon get some text of that sort. However,
nobody should give up from reading the rest, things are getting very interesting.
Let us return to the inequality (1) and study some of its generalizations. For a,b ≥ 0, the con-

sequence a+b2 ≥
√
ab of (1) is called the Arithmetic-Geometric mean inequality. Its left-hand side

is called the arithmetic mean of the numbers a and b, and its right-hand side is called the geometric
mean of a and b. This inequality has its analogue:

a+b+ c
3

≥ 3√abc, a,b,c≥ 0.

More generally, for a sequence x1, . . . ,xn of positive real numbers, the Arithmetic-Geometric mean
inequality holds:

x1+ x2+ · · ·+ xn
n

≥ n√x1 · x2 · · ·xn. (5)

These two inequalities are highly non-trivial, and there are variety of proofs to them. We did (5) for
n = 2. If you try to prove it for n = 3, you would see the real trouble. What a person tortured with
the case n= 3 would never suspect is that n= 4 is much easier to handle. It has to do something with
4 being equal 2 ·2 and 3 �= 2 ·2. I believe you are not satisfied by the previous explanation but you
have to accept that the case n= 3 comes after the case n= 4. The induction argument follows these
lines, but (un)fortunately we won’t do it here because that method doesn’t allow generalizations that
we need.
Besides (5) we have the inequality between quadratic and arithmetic mean, namely

√

x21+ x22+ · · ·+ x2n
n

≥ x1+ x2+ · · ·+ xn
n

. (6)

The case of equality in (5) and (6) occurs if and only if all the numbers x1, . . . ,xn are equal.
Arithmetic, geometric, and quadratic means are not the only means that we will consider. There

are infinitely many of them, and there are infinitely many inequalities that generalize (5) and (6). The
beautiful thing is that we will consider all of them at once. For appropriately defined means, a very
general inequality will hold, and the above two inequalities will ended up just being consequences.

Definition 1. Given a sequence x1,x2, . . . ,xn of positive real numbers, the mean of order r, denoted
by Mr(x) is defined as

Mr(x) =

(

xr1+ xr2+ · · ·+ xrn
n

) 1
r
. (7)
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Example 1. M1(x1, . . . ,xn) is the arithmetic mean, while M2(x1, . . . ,xn) is the geometric mean of the
numbers x1, . . . ,xn.

M0 can’t be defined using the expression (7) but we will show later that as r approaches 0, Mr
will approach the geometric mean. The famous mean inequality can be now stated as

Mr(x1, . . . ,xn) ≤Ms(x1, . . . ,xn), for 0≤ r ≤ s.

However we will treat this in slightly greater generality.

Definition 2. Let m = (m1, . . . ,mn) be a fixed sequence of non-negative real numbers such that
m1+m2+ · · ·+mn = 1. Then the weighted mean of order r of the sequence of positive reals x =
(x1, . . . ,xn) is defined as:

Mmr (x) = (xr1m1+ x
r
2m2+ · · ·+ xrnmn)

1
r . (8)

Remark. Sequence m is sometimes called a sequence of masses, but more often it is called a
measure, andMmr (x) is the Lr norm with repsect to the Lebesgue integral defined by m. I didn’t want
to scare anybody. I just wanted to emphasize that this hard-core math and not something coming
from physics.
We will prove later that as r tends to 0, the weighted mean Mmr (x) will tend to the weighted

geometric mean of the sequence x defined by Gm(x) = xm11 · xm22 · · ·xmnn .

Example 2. If m1 = m2 = · · · = 1
n then M

m
r (x) = Mr(x) where Mr(x) is previously defined by the

equation (7).

Theorem 3 (General Mean Inequality). If x = (x1, . . . ,xn) is a sequence of positive real numbers
and m= (m1, . . . ,mn) another sequence of positive real numbers satisfying m1+ · · ·+mn = 1, then
for 0≤ r ≤ s we have Mmr (x) ≤Mms (x).

The proof will follow from the Hölders inequality.

2 Convex Funtions
To prove some of the fundamental results we will need to use convexity of certain functions. Proofs
of the theorems of Young, Minkowski, and Hölder will require us to use very basic facts – you
should be fine if you just read the definition 3 and example 3. However, the section on Karamata’s
inequality will require some deeper knowledge which you can find here.

Definition 3. The function f : [a,b] → R is convex if for any x1,x2 ∈ [a,b] and any λ ∈ (0,1) the
following inequality holds:

f (λx1+(1−λ )x2) ≤ λ f (x1)+ (1−λ ) f (x2). (9)

Function is called concave if− f is convex. If the inequality in (9) is strict then the function is called
strictly convex.
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Now we will give a geometrical interpretation
of convexity. Take any x3 ∈ (x1,x2). There is
λ ∈ (0,1) such that x2 = λx1+(1−λ )x3. Let’s
paint in green the line passing through x3 and
parallel to the y axis. Let’s paint in red the chord
connecting the points (x1, f (x1)) and (x2, f (x2)).
Assume that the green line and the red chord in-
tersect at the yellow point. The y coordinate (also
called the height) of the yellow point is:

λ f (x1)+ (1−λ ) f (x2).
O x1 x2x3

f (x1)

f (x2)

f (x3)

x

y

The inequality (9) means exactly that the the green line will intersect the graph of a function below
the red chord. If f is strictly convex then the equality can hold in (9) if and only if x1 = x2.

Example 3. The following functions are convex: ex, xp (for p ≥ 1, x > 0), 1x (x �= 0), while the
functions logx (x> 0), sinx (0≤ x≤ π) , cosx (−π/2≤ x≤ π/2) are concave.

All functions mentioned in the previous example are elementary functions, and proving the con-
vexity/concavity for them would require us to go to the very basics of their foundation, and we will
not do that. In many of the examples and problems respective functions are slight modifications of
elementary functions. Their convexity (or concavity) is something we don’t have to verify. How-
ever, we will develop some criteria for verifying the convexity of more complex combinations of
functions.
Let us take another look at our picture above and compare the slopes of the three drawn lines.

The line connecting (x1, f (x1)) with (x3, f (x3)) has the smallest slope, while the line connecting
(x3, f (x3)) with (x2, f (x2)) has the largest slope. In the following theorem we will state and prove
that the convex function has always an ”increasing slope”.

Theorem 4. Let f : [a,b]→ R be a convex function and a≤ x1 < x3 < x2 ≤ b. Then

f (x3)− f (x1)
x3− x1

≤ f (x2)− f (x1)
x2− x1

≤ f (x2)− f (x3)
x2− x3

. (10)

Proof. We can write x3 = λx1+(1−λ )x2 for some λ ∈ (0,1). More precisely λ = x2−x3
x2−x1 , and

1−λ = x3−x1
x2−x1 . From (9) we get

f (x3) ≤
x2− x3
x2− x1

f (x1)+
x3− x1
x2− x1

f (x2).

Subtracting f (x1) from both sides of the last inequality yields f (x3)− f (x1) = − x3−x1
x2−x1 f (x1) +

x3−x1
x2−x1 f (x2) giving immediately the first inequality of (10). The second inequality of (10) is obtained
in an analogous way. �
The rest of this chapter is using some of the properties of limits, continuity and differentiability.

If you are not familiar with basic calculus, you may skip that part, and you will be able to understand
most of what follows. The theorem 6 is the tool for verifying the convexity for differentiable func-
tions that we mentioned before. The theorem 5 will be used it in the proof of Karamata’s inequality.

Theorem 5. If f : (a,b)→ R is a convex function, then f is continuous and at every point x ∈ (a,b)
it has both left and right derivative f ′−(x) and f ′+(x). Both f ′− and f ′+ are increasing functions on
(a,b) and f ′−(x) ≤ f ′+(x).
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Solution. The theorem 10 implies that for fixed x the function ϕ(t) = f (t)− f (x)
t−x , t �= x is an

increasing function bounded both by below and above. More precisely, if t0 and t1 are any two
numbers from (a,b) such that t0 < x< t1 we have:

f (x)− f (t0)
x− t0

≤ ϕ(t) ≤ f (t1)− f (x)
t1− x

.

This specially means that there are limt→x− ϕ(t) and limt→x+ ϕ(t). The first one is precisely the
left, and the second one – the right derivative of ϕ at x. Since the existence of both left and right
derivatives implies the continuity, the statement is proved. �

Theorem 6. If f : (a,b) → R is a twice differentiable function. Then f is convex on (a,b) if and
only if f ′′(x) ≥ 0 for every x ∈ (a,b). Moreover, if f ′′(x) > 0 then f is strictly convex.

Proof. This theorem is the immediate consequence of the previous one. �

3 Inequalities of Minkowski and Hölder
Inequalities presented here are sometimes called weighted inequalities of Minkowski, Hölder, and
Cauchy-Schwartz. The standard inequalities are easily obtained by placing mi = 1 whenever some
m appears in the text below. Assuming that the sum m1+ · · ·+mn = 1 one easily get the gener-
alized (weighted) mean inequalities, and additional assumption mi = 1/n gives the standard mean
inequalities.

Lemma 1. If x,y> 0, p> 1 and α ∈ (0,1) are real numbers, then

(x+ y)p ≤ α1−pxp+(1−α)1−pyp. (11)

The equality holds if and only if xα = y
1−α .

Proof. For p > 1, the function ϕ(x) = xp is strictly convex hence (αa+ (1−α)b)p ≤ αap+
(1−α)bp. The equality holds if and only if a = b. Setting x = αa and y = (1−α)b we get (11)
immediately. �

Lemma 2. If x1,x2, . . . ,xn,y1,y2, . . . ,yn and m1,m2, . . . ,mn are three sequences of positive real num-
bers and p > 1, α ∈ (0,1), then

n

∑
i=1

(xi+ yi)pmi ≤ α1−p
n

∑
i=1
xpi mi+(1−α)1−p

n

∑
i=1
ypi mi. (12)

The equality holds if and only if xiyi = α
1−α for every i, 1≤ i≤ n.

Proof. From (11) we get (xi+ yi)p ≤ α1−pxpi +(1−α)1−pypi . Multiplying by mi and adding as
1≤ i≤ n we get (12). The equality holds if and only if xiyi = α

1−α . �

Theorem 7 (Minkowski). If x1, x2, . . . , xn, y1, y2, . . . ,yn, and m1, m2, . . . ,mn are three sequences of
positive real numbers and p> 1, then

(

n

∑
i=1

(xi+ yi)pmi

)1/p

≤
(

n

∑
i=1
xpi mi

)1/p

+

(

n

∑
i=1
ypi mi

)1/p

. (13)

The equality holds if and only if the sequences (xi) and (yi) are proportional, i.e. if and only if there
is a constant λ such that xi = λyi for 1≤ i≤ n.
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Proof. For any α ∈ (0,1) we have inequality (12). Let us write

A=

(

n

∑
i=1
xpi mi

)1/p

, B=

(

n

∑
i=1
ypi mi

)1/p

.

In new terminology (12) reads as
n

∑
i=1

(xi+ yi)pmi ≤ α1−pAp+(1−α)1−pBp. (14)

If we choose α such that Aα = B
1−α , then (11) implies α1−pAp+(1−α)1−pBp = (A+B)p and (14)

now becomes
n

∑
i=1

(xi+ yi)pmi =

⎡

⎣

(

n

∑
i=1
xpi mi

)1/p

+

(

n

∑
i=1
ypi mi

)1/p
⎤

⎦

p

which is equivalent to (13). �

Problem 5 (SL70). If u1, . . . ,un,v1, . . . ,vn are real numbers, prove that

1+
n

∑
i=1

(ui+ vi)2 ≤
4
3

(

1+
n

∑
i=1
u2i

)(

1+
n

∑
i=1
v2i

)

.

When does equality hold?

Solution. Let us set a =

√

n

∑
i=1
u2i and b =

√

n

∑
i=1
v2i . By Minkowski’s inequality (for p = 2)

we have ∑ni=1(ui + vi)2 ≤ (a+ b)2. Hence the LHS of the desired inequality is not greater than
1+(a+b)2, while the RHS is equal to 4(1+a2)(1+b2)/3. Now it is sufficient to prove that

3+3(a+b)2≤ 4(1+a2)(1+b2).

The last inequality can be reduced to the trivial 0≤ (a−b)2+(2ab−1)2. The equality in the initial
inequality holds if and only if ui/vi = c for some c ∈ R and a= b= 1/

√
2. �

Theorem 8 (Young). If a,b> 0 and p,q> 1 satisfy 1p + 1
q = 1, then

ab≤ ap

p
+
bq

q
. (15)

Equality holds if and only if ap = bq.

Proof. Since ϕ(x) = ex is a convex function we have that e
1
p x+

1
q y ≤ 1

pe
x+ 1

q e
y. The equality

holds if and only if x = y, and the inequality (15) is immediately obtained by placing a = ex/p and
b= ey/q. The equality holds if and only if ap = bq. �

Lemma 3. If x1,x2, . . . ,xn,y1,y2, . . . ,yn,m1,m2, . . . ,mn are three sequences of positive real numbers
and p,q> 1 such that 1p + 1

q = 1, and α > 0, then

n

∑
i=1
xiyimi ≤

1
p
·α p ·

n

∑
i=1
xpi mi+

1
q
· 1

αq
·
n

∑
i=1
yqi mi. (16)

The equality holds if and only if α pxpi
p =

yqi
qαq for 1≤ i≤ n.
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Proof. From (15) we immediately get xiyi = (αxi) yiα ≤ 1
p ·α px

p
i + 1

q · 1αq y
q
i . Multiplying by mi

and adding as i= 1,2, . . . ,nwe get (16). The inequality holds if and only if α pxpi
p =

yqi
qαq for 1≤ i≤ n.

�

Theorem 9 (Hölder). If x1,x2, . . . ,xn,y1,y2, . . . ,yn,m1,m2, . . . ,mn are three sequences of positive
real numbers and p,q> 1 such that 1p + 1

q = 1, then

n

∑
i=1
xiyimi ≤

(

n

∑
i=1
xpi mi

)1/p

·
(

n

∑
i=1
yqi mi

)1/q

. (17)

The equality holds if and only if the sequences (xpi ) and (yqi ) are proportional.

Proof. The idea is very similar to the one used in the proof of Minkowski’s inequality. The
inequality (16) holds for any positive constant α . Let

A=

(

α p
n

∑
i=1
xpi mi

)1/p

, B=

(

1
αq

n

∑
i=1
yqi mi

)1/q

.

By Young’s inequality we have that 1pA
p + 1

qB
q = AB if Ap = Bq. Equivalently α p∑ni=1 x

p
i mi =

1
αq ∑ni=1 y

q
i mi. Choosing such an α we get

n

∑
i=1
xiyimi ≤

1
p
Ap+

1
q
Bq = AB=

(

n

∑
i=1
xpi mi

)1/p

·
(

n

∑
i=1
yqi mi

)1/q

. �

Problem 6. If a1, . . . ,an and m1, . . . ,mn are two sequences of positive numbers such that a1m1+

· · ·+anmn = α and a21m1+ · · ·+a2nmn = β 2, prove that√a1m1+ · · ·+√anmn ≥ α3/2
β .

Solution. We will apply Hölder’s inequality on xi = a
1/3
i , yi = a

2/3
i , p= 3

2 , q= 3:

α =
n

∑
i=1
aimi ≤

(

n

∑
i=1
a1/2i mi

)2/3

·
(

n

∑
i=1
a2i mi

)1/3

=

(

n

∑
i=1

√
aimi

)2/3

·β 2/3.

Hence ∑ni=1
√aimi ≥ α3/2

β . �
Proof of the theorem 3. Mmr = (∑ni=1 xri ·mi)1/r. We will use the Hölders inequality for yi = 1,
p= s

r , and q= p
1−p . Then we get

Mmr ≤
(

n

∑
i=1
xrpi ·mi

) 1
pr

·
(

n

∑
i=1
1q ·mi

)p/(1−p)

=Ms. �

Problem 7. (SL98) Let x, y, and z be positive real numbers such that xyz= 1. Prove that

x3

(1+ y)(1+ z)
+

y3

(1+ z)(1+ x)
+

z3

(1+ x)(1+ y)
≥ 3
4
.
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Solution. The given inequality is equivalent to

x3(x+1)+ y3(y+1)+ z3(z+1) ≥ 3
4
(1+ x+ y+ z+ xy+ yz+ zx+ xyz).

The left-hand side can be written as x4+ y4+ z4+ x3+ y3+ z3 = 3M44 +3M33 . Using xy+ yz+ zx≤
x2+ y2+ z2 = 3M22 we see that the right-hand side is less than or equal to

3
4 (2+3M1+3M22). Since

M1 ≥ 3 3
√xyz= 1, we can further say that the right-hand side of the required inequality is less than or

equal to 34 (5M1+3M
2
2). Since M4 ≥M3, andM1 ≤M2 ≤M3, the following inequality would imply

the required statement:

3M43 +3M33 ≥
3
4
(5M3+3M23).

However the last inequality is equivalent to (M3− 1)(4M23 + 8M3+ 5) ≥ 0 which is true because
M3 ≥ 1. The equality holds if and only if x= y= z= 1. �
Theorem 10 (Weighted Cauchy-Schwartz). If xi, yi are real numbers, and mi positive real numbers,
then

n

∑
i=1
xiyimi ≤

√

n

∑
i=1
x2i mi ·

√

n

∑
i=1
y2i mi. (18)

Proof. After noticing that ∑ni=1 xiyimi ≤ ∑ni=1 |xi| · |yi|mi, the rest is just a special case (p= q= 2)
of the Hölder’s inequality. �
Problem 8. If a, b, and c are positive numbers, prove that

a
b

+
b
c

+
c
a
≥ (a+b+ c)2

ab+bc+ ca
.

Solution. We will apply the Cauchy-Schwartz inequality with x1 =
√ a
b , x2 =

√

b
c , x3 =

√ c
a ,

y1 =
√
ab, y2 =

√
bc, and y3 =

√
ca. Then

a+b+ c = x1y1+ x2y2+ x3y3 ≤
√

x21+ x22+ x
2
3 ·
√

y21+ y22+ y
2
3

=

√

a
b

+
b
c

+
c
a
·
√
ab+bc+ ca.

Theorem 11. If a1, . . . ,an are positive real numbers, then

lim
r→0
Mr(a1, . . . ,an) = am11 ·am22 · · ·amnn .

Proof. This theorem is given here for completeness. It states that as r→ 0 the mean of order r
approaches the geometric mean of the sequence. Its proof involves some elementary calculus, and
the reader can omit the proof.

Mr(a1, . . . ,an) = e
1
r log(a

r
1m1+···+arnmn).

Using the L’Hospitale’s theorem we get

lim
r→0

1
r
log(ar1m1+ · · ·+arnmn) = lim

r→0
m1ar1 loga1+ · · ·+mnarn logan

ar1m1+ · · ·+arnmn
= m1 loga1+ · · ·+mn logan
= log

(

am11 · · ·amnn
)

.

The result immediately follows. �
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4 Inequalities of Schur and Muirhead
Definition 4. Let ∑!F(a1, . . . ,an) be the sum of n! summands which are obtained from the function
F(a1, . . . ,an) making all permutations of the array (a).

We will consider the special cases of the functio F, i.e. when F(a1, . . . ,an) = aα1
1 · · · · · aαn

n ,
αi ≥ 0.
If (α) is an array of exponents and F(a1, . . . ,an) = aα1

1 · · · · ·aαn
n we will use T [α1, . . . ,αn] instead

of ∑!F(a1, . . . ,an), if it is clear what is the sequence (a).

Example 4. T [1,0, . . . ,0] = (n−1)! · (a1+a2+ · · ·+an), and T [ 1n ,
1
n , . . . ,

1
n ] = n! · n

√a1 · · · · ·an. The
AM-GM inequality is now expressed as:

T [1,0, . . . ,0] ≥ T
[

1
n
, . . . ,

1
n

]

.

Theorem 12 (Schur). For α ∈ R and β > 0 the following inequality holds:

T [α +2β ,0,0]+T[α,β ,β ] ≥ 2T [α + β ,β ,0]. (19)

Proof. Let (x,y,z) be the sequence of positive reals for which we are proving (19). Using some
elementary algebra we get

1
2
T [α +2β ,0,0]+

1
2
T [α,β ,β ]−T [α + β ,β ,0]

= xα(xβ − yβ )(xβ − zβ )+ yα(yβ − xβ )(yβ − zβ )+ zα(zβ − xβ )(zβ − yβ ).

Without loss of generality we may assume that x ≥ y ≥ z. Then in the last expression only the
second summand may be negative. If α ≥ 0 then the sum of the first two summands is ≥ 0 because
xα(xβ − yβ )(xβ − zβ ) ≥ xα(xβ − yβ )(yβ − zβ ) ≥ yα(xβ − yβ )(yβ − zβ ) = −yα(xβ − yβ )(yβ − zβ ).
Similarly for α < 0 the sum of the last two terms is ≥ 0. �

Example 5. If we set α = β = 1, we get

x3+ y3+ z3+3xyz≥ x2y+ xy2+ y2z+ yz2+ z2x+ zx2.

Definition 5. We say that the array (α) majorizes array (α ′), and we write that in the following way
(α ′) ≺ (α), if we can arrange the elements of arrays (α) and (α ′) in such a way that the following
three conditions are satisfied:

1. α ′
1+ α ′

2+ · · ·+ α ′
n = α1+ α2+ · · ·+ αn;

2. α ′
1 ≥ α ′

2 ≥ ·· · ≥ α ′
n i α1 ≥ α2 ≥ ·· · ≥ αn.

3. α ′
1+ α ′

2+ · · ·+ α ′
ν ≤ α1+ α2+ · · ·+ αν , for all 1≤ ν < n.

Clearly, (α) ≺ (α).

Theorem 13 (Muirhead). The necessairy and sufficient condition for comparability of T [α] and
T [α ′], for all positive arrays (a), is that one of the arrays (α) and (α ′) majorizes the other. If
(α ′) ≺ (α) then

T [α ′] ≤ T [α].

Equality holds if and only if (α) and (α ′) are identical, or when all ais are equal.

191
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Proof. First, we prove the necessity of the condition. Setting that all elements of the array a are
equal to x, we get that

x∑α ′
i ≤ x∑αi .

This can be satisfied for both large and small xs only if the condition 1 from the definition is satisfied.
Now we put a1 = · · · ,aν = x and aν+1 = · · · = an = 1. Comparing the highest powers of x in
expressions T [α] and T [α ′], knowing that for sufficiently large x we must have T [α ′] ≤ T [α], we
conclude that α ′

1+ · · ·+ α ′
ν ≤ α1+ · · ·+ αν .

Now we will proof the sufficiency of the condition. The statement will follow from the following
two lemmas. We will define one linear operation L on the set of the exponents (α). Suppose that αk
and αl are two different exponents of (α) such that αk > αl . We can write

αk = ρ + τ, αl = ρ − τ (0< τ ≤ ρ).

If 0≤ σ < τ ≤ ρ , define the array (α ′) = L(α) in the following way:
⎧

⎨

⎩

α ′
k = ρ + σ = τ+σ

2τ αk+ τ−σ
2τ αl ,

α ′
l = ρ −σ = τ−σ

2τ αk+ τ+σ
2τ αl ,

α ′
ν = αν , (ν �= k,ν �= l).

The definition of this mapping doesn’t require that some of the arrays (α) and (α ′) is in non-
decreasing order.

Lemma 4. If (α ′) = L(α), then T [α ′] ≤ T [α], and equality holds if and only if all the elements of
(a) are equal.

Proof.We may rearrange the elements of the sequence such that k = 1 i l = 2. Then we have

T [α]−T [α ′]

= ∑!aα3
3 · · ·aαn

n · (aρ+τ
1 aρ−τ

2 +aρ−τ
1 aρ+τ

2 −aρ+σ
1 aρ−σ

2 −aρ−σ
1 aρ+σ

2 )

= ∑!(a1a2)ρ−τaα3
3 · · ·aαn

n (aτ+σ
1 −aτ+σ

2 )(aτ−σ
1 −aτ−σ

2 ) ≥ 0.

Eaquality holds if and only if ais are equal. �

Lemma 5. If (α ′) ≺ (α), but (α ′) and (α) are different, then (α ′) can be obtained from (α) by
succesive application of the transformation L.

Proof. Denote by m the number of differences αν −α ′
ν that are �= 0. m is a positive integer and

we will prove that we can apply operation L in such a way that after each of applications, number
m decreases (this would imply that the procedure will end up after finite number of steps). Since
∑(αν −α ′

ν) = 0, and not all of differences are 0, there are positive and negative differences, but the
first one is positive. We can find such k and l for which:

α ′
k < αk, α ′

k+1 = αk+1, . . . ,α ′
l−1 = αl−1, α ′

l > αl .

(αl−α ′
l is the first negative difference, and αk−α ′

k is the last positive difference before this negative
one). Let αk = ρ + τ and αl = ρ − τ , define σ by

σ =max{|α ′
k−ρ |, |α ′

l −ρ |}.

At least one of the following two equalities is satisfied:

α ′
l −ρ = −σ , α ′

k−ρ = σ ,
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because α ′
k > α ′

l . We also have σ < τ , because α ′
k < αk i α ′

l > αl . Let

α ′′
k = ρ + σ , α ′′

l = ρ −σ , α ′′
ν = αν (ν �= k,ν �= l).

Now instead of the sequence (α) we will consider the sequence (α ′′). Number m has decreased by
at least 1. It is easy to prove that the sequence (α ′′) is increasing and majorizes (α ′). Repeating this
procedure, we will get the sequence (α ′) which completes the proof of the second lemma, and hence
the Muirhead’s theorem. � �

Example 6. AM-GM is now the consequence of the Muirhead’s inequality.

Problem 9. Prove that for positive numbers a,b and c the following equality holds:

1
a3+b3+abc

+
1

b3+ c3+abc
+

1
c3+a3+abc

≤ 1
abc

.

Solution. After multiplying both left and right-hand side of the required inequality with abc(a3+
b3+abc)(b3+ c3+abc)(c3+a3+abc) we get that the original inequality is equivalent to

3
2T [4,4,1]+2T [5,2,2]+ 1

2T [7,1,1]+ 1
2T [3,3,3]≤

≤ 1
2T [3,3,3]+T [6,3,0]+ 3

2T [4,4,1]+ 1
2T [7,1,1]+T [5,2,2]

which is true because Muirhead’s theorem imply that T [5,2,2]≤ T [6,3,0]. �
More problems with solutions using Muirhead’s inequality can be found in the section ”Prob-

lems”.

5 Inequalities of Jensen and Karamata
Theorem 14 (Jensen’s Inequality). If f is convex function and α1, . . . ,αn sequence of real numbers
such that α1+ · · ·+αn = 1, than for any sequence x1, . . . ,xn of real numbers, the following inequality
holds:

f (α1x1+ · · ·+ αnxn) ≤ α1 f (x1)+ · · ·+ αn f (xn).

Remark. If f is concave, then f (α1x1+ · · ·+ αnxn) ≥ α1 f (x1)+ · · ·+ αn f (xn).

Example 7. Using Jensen’s inequality prove the generalized mean inequality, i.e. that for every
two sequences of positive real numbers x1, . . . ,xn and m1, . . . ,mn such that m1+ · · ·+mn = 1 the
following inequality holds:

m1x1+m2x2+ · · ·+mnxn ≥ xm11 · xm22 · · ·xmnn .

Theorem 15 (Karamata’s inequalities). Let f be a convex function and x1, . . . ,xn, y1,y2, . . . ,yn two
non-increasing sequences of real numbers. If one of the following two conditions is satisfied:

(a) (y) ≺ (x);

(b) x1 ≥ y1, x1+ x2 ≥ y1+ y2, x1+ x2+ x3 ≥ y1+ y2+ y3, . . . , x1+ · · ·+ xn−1 ≥ y1+ · · ·+ yn−1,
x1+ · · ·+ xn ≥ y1+ · · ·+ yn and f is increasing;

then
n

∑
i=1
f (xi) ≥

n

∑
i=1
f (yi). (20)
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Proof. Let ci = f (yi)− f (xi)
yi−xi , for yi �= xi, and ci = f ′+(xi), for xi = yi. Since f is convex, and xi, yi

are decreasing sequences, ci is non-increasing (because is represents the ”slope” of f on the interval
between xi and yi). We now have

n

∑
i=1
f (xi)−

n

∑
i=1
f (yi) =

n

∑
i=1
ci(xi− yi) =

n

∑
i=1
cixi−

n

∑
i=1
ciyi

=
n

∑
i=1

(ci− ci+1)(x1+ · · ·+ xi)

−
n

∑
i=1

(ci− ci+1)(y1+ · · ·+ yi), (21)

here we define cn+1 to be 0. Now, denoting Ai = x1+ · · ·+ xi and Bi = y1+ · · ·+ yi (21) can be
rearranged to

n

∑
i=1
f (xi)−

n

∑
i=1
f (yi) =

n−1
∑
i=1

(ci− ci+1)(Ai−Bi)+ cn · (An−Bn).

The sum on the right-hand side of the last inequality is non-negative because ci is decreasing and
Ai ≥ Bi. The last term cn(An−Bn) is zero under the assumption (a). Under the assumption (b) we
have that cn ≥ 0 ( f is increasing) and An ≥ Bn and this implies (20). �

Problem 10. If a1≥ a2≥ ·· · ≥ an and b1≥ b2≥ ·· · ≥ bn are two sequences of positive real numbers
which satisfy the following conditions:

a1 ≥ b2, a1a2 ≥ b1b2, a1a2a3 ≥ b1b2b3, · · · ≥ a1a2 · · ·an ≥ b1b2 · · ·bn,

prove that
a1+a2+ · · ·+an ≥ b1+b2+ · · ·+bn.

Solution. Let ai = exi and bi = eyi . We easily verify that the conditions (b) of the Karamata’s
theorem are satisfied. Thus ∑ni=1 eyi ≥ ∑ni=1 exi and the result immediately follows. �

Problem 11. If x1, . . . ,xn ∈ [−π/6,π/6], prove that

cos(2x1− x2)+ cos(2x2− x3)+ · · ·+ cos(2xn− x1) ≤ cosx1+ · · ·+ cosxn.

Solution. Rearrange (2x1 − x2,2x2− x3, . . . ,2xn− x1) and (x1, . . . ,xn) in two non-increasing
sequences (2xm1−xm1+1,2xm2−xm2+1, . . . ,2xmn−xmn+1) and (xk1 ,xk2 , . . . ,xkn) (here we assume that
xn+1 = x1. We will verify that condition (a) of the Karamata’s inequality is satisfied. This follows
from

(2xm1 − xm1+1+ · · ·+2xml − xml+1)− (xk1 + · · ·+ xkl )
≥ (2xk1 − xk1+1+ · · ·+2xkl − xkl+1)− (xk1 + · · ·+ xkl )
= (xk1 + · · ·xkl )− (xk1+1+ · · ·+ xkl+1) ≥ 0.

The function f (x) =−cosx is convex on [−π/2,π/2] hence Karamata’s inequality holds and we get

−cos(2x1− x2)−·· ·− cos(2xn− x1) ≥−cosx1−·· ·− cosxn,

which is obviously equivalent to the required inequality. �
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6 Chebyshev’s inequalities
Theorem 16 (Chebyshev’s inequalities). Let a1 ≥ a2 ≥ ·· · ≥ an and b1 ≥ b2 ≥ ·· · ≥ bn be real
numbers. Then

n
n

∑
i=1
aibi ≥

(

n

∑
i=1
ai

)(

n

∑
i=1
bi

)

≥ n
n

∑
i=1
aibn+1−i. (22)

The two inequalities become equalities at the same time when a1 = a2 = · · ·= an or b1 = b2 = · · · =
bn.

The Chebyshev’s inequality will follow from the following generalization (placing mi = 1
n for

the left part, and the right inequality follows by applying the left on ai and ci = −bn+1−i).

Theorem 17 (Generalized Chebyshev’s Inequality). Let a1 ≥ a2 ≥ ·· · ≥ an and b1 ≥ b2 ≥ ·· · ≥ bn
be any real numbers, and m1, . . . ,mn non-negative real numbers whose sum is 1. Then

n

∑
i=1
aibimi ≥

(

n

∑
i=1
aimi

)(

n

∑
i=1
bimi

)

. (23)

The inequality become an equality if and only if a1 = a2 = · · · = an or b1 = b2 = · · · = bn.

Proof. From (ai−a j)(bi−b j) ≥ 0 we get:

∑
i, j

(ai−a j)(bi−b j)mimj ≥ 0. (24)

Since (∑ni=1 aimi) · (∑ni=1 bimi) = ∑i, j aib jmimj, (24) implies that

0 ≤ ∑
i, j
aibimimj−∑

i, j
aib jmimj−∑

i, j
a jbim jmi+∑

i, j
a jb jmimj

= 2

[

∑
i
aibimi−

(

∑
i
aimi

)(

∑
i
bimi

)]

. �

Problem 12. Prove that the sum of distances of the orthocenter from the sides of an acute triangle
is less than or equal to 3r, where the r is the inradius.

Solution. Denote a= BC, b=CA, c= AB and let SABC denote the area of the triangle ABC. Let
dA, dB, dC be the distances from H to BC, CA, AB, and A′, B′, C′ the feet of perpendiculars from
A, B, C. Then we have ada+ bdb+ cdc = 2(SBCH + SACH + SABH) = 2P. On the other hand if we
assume that a≥ b≥ c, it is easy to prove that dA ≥ dB ≥ dC. Indeed, a≥ b implies ∠A≥ ∠B hence
∠HCB′ ≤ ∠HCA′ and HB′ ≤ HA′. The Chebyshev’s inequality implies

(a+b+ c)r= 2P= ada+bdb+ cdc �
1
3
(a+b+ c)(da+db+dc). �

7 Problems
1. If a,b,c,d > 0, prove that

a
b+ c

+
b
c+d

+
c

d+a
+

d
a+b

≥ 2.
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2. Prove that
a3

a2+ab+b2
+

b3

b2+bc+ c2
+

c3

c2+ ca+a2
≥ a+b+ c

3
,

for a,b,c> 0.

3. If a,b,c,d,e, f > 0, prove that

ab
a+b

+
cd
c+d

+
e f
e+ f

≤ (a+ c+ e)(b+d+ f )
a+b+ c+d+ e+ f

.

4. If a,b,c≥ 1, prove that
√
a−1+

√
b−1+

√
c−1≤

√

c(ab+1).

5. Let a1,a2, . . . ,an,b1,b2, . . . ,bn be positive real numbers. Prove that
(

∑
i�= j
aib j

)2

≥
(

∑
i�= j
aia j

)(

∑
i�= j
bib j

)

.

6. If 1x + 1
y + 1

z = 1 for x,y,z > 0, prove that

(x−1)(y−1)(z−1)≥ 8.

7. Let a,b,c> 0 satisfy abc= 1. Prove that

1
√

b+ 1
a + 1

2

+
1

√

c+ 1
b + 1

2

+
1

√

a+ 1
c + 1

2

≥
√
2.

8. Given positive numbers a,b,c,x,y,z such that a+ x= b+ y= c+ z= S, prove that ay+bz+
cx< S2.

9. Let a,b,c be positive real numbers. Prove the inequality

a2

b
+
b2

c
+
c2

a
≥ a+b+ c+

4(a−b)2
a+b+ c

.

10. Determine the maximal real number a for which the inequality

x21+ x
2
2+ x

2
3+ x

2
4+ x

2
5 ≥ a(x1x2+ x2x3+ x3x4+ x4x5)

holds for any five real numbers x1,x2,x3,x4,x5.

11. If x,y,z≥ 0 and x+ y+ z= 1, prove that

0≤ xy+ yz+ zx−2xyz≤ 7
27

.

12. Let a,b and c be positive real numbers such that abc= 1. Prove that

1
a3(b+ c)

+
1

b3(c+a)
+

1
c3(a+b)

≥ 3
2
.
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13. If a,b and c are positive real numbers, prove that:

a3

b2−bc+ c2 +
b3

c2− ca+a2
+

c3

a2−ab+b2
≥ 3 · ab+bc+ ca

a+b+ c
.

14. (IMO05) Let x,y and z be positive real numbers such that xyz≥ 1. Prove that

x5− x2
x5+ y2+ z2

+
y5− y2

y5+ z2+ x2
+

z5− z2
z5+ x2+ y2

≥ 0.

15. Let a1, . . . ,an be positive real numbers. Prove that

a31
a2

+
a32
a3

+ · · ·+ a
3
n
a1

≥ a21+a22+ · · ·+a2n.

16. Let a1, . . . ,an be positive real numbers. Prove that

(1+a1)(1+a2) · · · (1+an) ≤
(

1+
a21
a2

)

·
(

1+
a22
a3

)

· · · · ·
(

1+
a2n
a1

)

.

17. If a,b, and c are the lengths of the sides of a triangle, s its semiperimeter, and n≥ 1 an integer,
prove that

an

b+ c
+

bn

c+a
+

cn

a+b
≥
(

2
3

)n−2
· sn−1.

18. Let 0< x1 ≤ x2 ≤ ·· · ≤ xn (n≥ 2) and

1
1+ x1

+
1

1+ x2
+ · · ·+ 1

1+ xn
= 1.

Prove that

√
x1+

√
x2+ · · ·+√

xn ≥ (n−1)
(

1√x1
+

1√x2
+ · · ·+ 1√xn

)

.

19. Suppose that any two members of certain society are either friends or enemies. Suppose that
there is total of n members, that there is total of q pairs of friends, and that in any set of
three persons there are two who are enemies to each other. Prove that there exists at least one
member among whose enemies we can find at most q ·

(

1− 4q
n2

)

pairs of friends.

20. Given a set of unit circles in the plane whose total area is S. Prove that among those circles
there exist certain number of non-intersecting circles whose total area is ≥ 2

9S.

8 Solutions
1. Denote by L the left-hand side of the required inequality. If we add the first and the third
summand of L we get

a
b+ c

+
c

d+a
=
a2+ c2+ad+bc
(b+ c)(a+d)

.
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We will bound the denominator of the last fraction using the inequality xy ≤ (x+ y)2/4 for
appropriate x and y. For x= b+ c and y = a+d we get (b+ c)(a+d) ≤ (a+b+ c+d)2/4.
The equality holds if and only if a+d = b+ c. Therefore

a
b+ c

+
c

d+a
≥ 4a

2+ c2+ad+bc
(a+b+ c+d)2

.

Similarly b
c+d + d

a+b ≥ 4 b
2+d2+ab+cd
(a+b+c+d)2 (with the equality if and only if a+b= c+d) implying

a
b+ c

+
b
c+d

+
c

d+a
+

d
a+b

≥ 4
a2+b2+ c2+d2+ad+bc+ab+ cd

(a+b+ c+d)2

= 4
a2+b2+ c2+d2+(a+ c)(b+d)

[(a+ c)+ (b+d)]2
.

In order to solve the problem it is now enough to prove that

2
a2+b2+ c2+d2+(a+ c)(b+d)

[(a+ c)+ (b+d)]2
≥ 1. (25)

After multiplying both sides of (25) by [(a+ c)+ (b+ d)]2 = (a+ c)2+(b+ d)2 it becomes
equivalent to 2(a2+ b2+ c2+ d2) ≥ (a+ c)2+(b+ d)2 = a2+ b2+ c2+ d2+ 2ac+ 2bd. It
is easy to see that the last inequality holds because many terms will cancel and the remaining
inequality is the consequence of a2+ c2 ≥ 2ac and b2+ d2 ≥ 2bc. The equality holds if and
only if a= c and b= d.

2. We first notice that

a3−b3
a2+ab+b2

+
b3− c3

b2+bc+ c2
+

c3−a3
c2+ ca+a2

= 0.

Hence it is enough to prove that

a3+b3

a2+ab+b2
+

b3+ c3

b2+bc+ c2
+

c3+a3

c2+ ca+a2
≥ 2(a+b+ c)

3
.

However since 3(a2−ab+b2) ≥ a2+ab+b2,

a3+b3

a2+ab+b2
= (a+b)

a2−ab+b2

a2+ab+b2
≥ a+b

3
.

The equality holds if and only if a= b= c.
Second solution. First we prove that

a3

a2+ab+b2
≥ 2a−b

3
. (26)

Indeed after multiplying we get that the inequality is equivalent to a3+ b3 ≥ ab(a+ b), or
(a+b)(a−b)2 ≥ 0 which is true. After adding (26) with two similar inequalities we get the
result.
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3. We will first prove that

ab
a+b

+
cd
c+d

≤ (a+ c)(b+d)
a+b+ c+d

. (27)

As is the case with many similar inequalities, a first look at (27) suggests to multiply out both
sides by (a+b)(c+d)(a+b+ c+d). That looks scary. But we will do that now. In fact you
will do, I will not. I will just encourage you and give moral support (try to imagine me doing
that). After you multiply out everything (do it twice, to make sure you don’t make a mistake in
calculation), the result will be rewarding. Many things cancel out and what remains is to verify
the inequality 4abcd ≤ a2d2+ b2c2 which is true because it is equivalent to 0 ≤ (ad− bc)2.
The equality holds if and only if ad = bc, or ab = c

d .
Applying (27) with the numbers A= a+ c, B= b+d,C = e, and D= f yields:

(a+ c)(b+d)
a+b+ c+d

+
e f
e+ f

≤ (A+C)(B+D)

A+B+C+D
=

(a+ c+ e)(b+d+ f )
a+b+ c+d+ e+ f

,

and the required inequality is proved because (27) can be applied to the first term of the left-
hand side. The equality holds if and only if ab = c

d = e
f .

4. To prove the required inequality we will use the similar approach as in the previous problem.
First we prove that

√
a−1+

√
b−1≤

√
ab. (28)

Squaring both sides gives us that the original inequality is equivalent to

a+b−2+2
√

(a−1)(b−1)≤ ab
⇔ 2

√

(a−1)(b−1)≤ ab−a−b+2= (a−1)(b−1)+1. (29)

The inequality (29) is true because it is of the form x+1≥ 2√x for x= (a−1)(b−1).
Now we will apply (28) on numbers A= ab+1 and B= c to get

√
ab+

√
c−1=

√
A−1+

√
B−1≤

√
AB=

√

(ab+1)c.

The first term of the left-hand side is greater than or equal to
√
a−1+

√
b−1 which proves

the statement. The equality holds if and only if (a−1)(b−1) = 1 and ab(c−1) = 1.

5. Let us denote p = ∑ni=1 ai,q = ∑ni=1 bi,k = ∑ni=1 a2i , l = ∑ni=1 b2i , and m = ∑ni=1 aibi. The fol-
lowing equalities are easy to verify:

∑
i�= j
aib j = pq−m, ∑

i�= j
aia j = p2− k, and ∑

i�= j
bib j = q2− l,

so the required inequality is equivalent to

(pq−m)2 ≥ (p2− k)(q2− l) ⇔ l p2−2qm · p+m2+q2k− kl ≥ 0.

Consider the last expression as a quadratic equation in p, i.e. ϕ(p) = l p2−2qm · p+q2k− kl.
If we prove that its discriminant is less than or equal to 0, we are done. That condition can be
written as:

q2m2− l(m2+q2k− kl) ≤ 0⇔ (lk−m2)(q2− l) ≥ 0.
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The last inequality is true because q2− l = ∑i�= j bib j > 0 (bi are positive), and lk−m2 ≥
0 (Cauchy-Schwartz inequality). The equality holds if and only if lk−m2 = 0, i.e. if the
sequences (a) and (b) are proportional.

6. This is an example of a problem where we have some conditions on x, y, and z. Since there are
many reciprocals in those conditions it is natural to divide both sides of the original inequality
by xyz. Then it becomes

(

1− 1
x

)

·
(

1− 1
y

)

·
(

1− 1
z

)

≥ 8
xyz

. (30)

However 1− 1
x = 1

y + 1
z and similar relations hold for the other two terms of the left-hand side

of (30). Hence the original inequality is now equivalent to
(

1
y

+
1
z

)

·
(

1
z

+
1
x

)

·
(

1
x

+
1
y

)

≥ 8
xyz

,

and this follows from 1
x + 1

y ≥ 2 1√xy ,
1
y + 1

z ≥ 2 1√yz , and
1
z + 1

x ≥ 2 1√
zx . The equality holds if

and only if x= y= z= 3.

7. Notice that
1
2

+b+
1
a

+
1
2

> 2

√

1
2
·
(

b+
1
a

+
1
2

)

.

This inequality is strict for any two positive numbers a and b. Using the similar inequalities
for the other two denominators on the left-hand side of the required inequality we get:

1
√

b+ 1
a + 1

2

+
1

√

c+ 1
b + 1

2

+
1

√

a+ 1
c + 1

2

>
√
2

(

1
1+ 1

a +b
+

1
1+ 1

b + c
+

1
1+ 1

c +a

)

. (31)

The last expression in (31) can be transformed using 1
1+ 1

a+b
= a
1+a+ab = a

1+ 1
c+a

and 1
1+ 1

b+c
=

1
c(ab+a+1) =

1
c

1+ 1
c+a
. Thus

√
2

(

1
1+ 1

a +b
+

1
1+ 1

b + c
+

1
1+ 1

c +a

)

=
√
2 · 1+ 1

c +a
1+ 1

c +a
=
√
2.

The equality can never hold.

8. Denote T = S/2. One of the triples (a,b,c) and (x,y,z) has the property that at least two
of its members are greater than or equal to T . Assume that (a,b,c) is the one, and choose
α = a−T , β = b−T , and γ = c−T . We then have x = T −α , y = T −β , and z = T − γ .
Now the required inequality is equivalent to

(T + α)(T −β )+ (T + β )(T − γ)+ (T + γ)(T −α) < 4T 2.
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After simplifying we get that what we need to prove is

− (αβ + β γ + γα) < T 2. (32)

We also know that at most one of the numbers α , β , γ is negative. If all are positive, there is
nothing to prove. Assume that γ < 0. Now (32) can be rewritten as −αβ − γ(α + β ) < T 2.
Since−γ < T we have that−αβ −γ(α +β ) <−αβ +T (α +β ) and the last term is less than
T since (T −α)(T −β ) > 0.

9. Starting from (a−b)2
b = a2

b −2a+b and similar equalitites for (b−c)2/c and (c−a)2/a we get
the required inequality is equivalent to

(a+b+ c)
(

(a−b)2
b

+
(b− c)2
a

+
(c−a)2
b

)

≥ 4(a−b)2. (33)

By the Cauchy-Schwartz inequality we have that the left-hand side of (33) is greater than or
equal to (|a−b|+ |b− c|+ |c−a|)2. (33) now follows from |b− c|+ |c−a|≥ |a−b|.

10. Note that

x21+ x
2
2+ x

2
3+ x

2
4+ x

2
5

=

(

x21+
x22
3

)

+

(

2x22
3

+
x23
2

)

+

(

x23
2

+
2x24
3

)

+

(

x24
3

+ x25

)

.

Now applying the inequality a2+b2 ≥ 2ab we get

x21+ x22+ x23+ x24+ x25 ≥
2√
3
(x1x2+ x2x3+ x3x4+ x4x5).

This proves that a≥ 2√
3 . In order to prove the other inequality it is sufficient to notice that for

(x1,x2,x3,x4,x5) = (1,
√
3,2,

√
3,1) we have

x21+ x22+ x
2
3+ x

2
4+ x

2
5 =

2√
3
(x1x2+ x2x3+ x3x4+ x4x5).

11. Since xy+ yz+ zx− 2xyz = (x+ y+ z)(xy+ yz+ zx)− 2xyz = T [2,1,0]+ 1
6T [1,1,1] the left

part of the inequality follows immediately. In order to prove the other part notice that

7
27

=
7
27

(x+ y+ z)3 =
7
27

(

1
2
T [3,0,0]+3T [2,1,0]+T [1,1,1]

)

.

After multiplying both sides by 54 and cancel as many things as possible we get that the
required inequality is equivalent to:

12T [2,1,0]≤ 7T [3,0,0]+5T [1,1,1].

This inequality is true because it follows by adding up the inequalities 2T [2,1,0] ≤ 2T [3,0,0]
and 10T [2,1,0]≤ 5T [3,0,0]+5T [1,1,1] (the first one is a consequence of the Muirhead’s and
the second one of the Schur’s theorem for α = β = 1).
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12. The expressions have to be homogenous in order to apply the Muirhead’s theorem. First we
divide both left and right-hand side by (abc)

4
3 = 1 and after that we multiply both sides by

a3b3c3(a+b)(b+ c)(c+a)(abc)
4
3 . The inequality becomes equivalent to

2T
[

16
3

,
13
3

,
7
3

]

+T
[

16
3

,
16
3

,
4
3

]

+T
[

13
3

,
13
3

,
10
3

]

≥ 3T [5,4,3]+T [4,4,4].

The last inequality follows by adding the following three which are immediate consequences
of the Muirhead’s theorem:

1. 2T
[ 16
3 , 133 , 73

]

≥ 2T [5,4,3],

2. T
[ 16
3 , 163 , 43

]

≥ T [5,4,3],

3. T
[ 13
3 , 133 , 103

]

≥ T [4,4,4].

The equality holds if and only if a= b= c= 1.

13. The left-hand side can be easily transformed into a
3(b+c)
b3+c3 + b3(c+a)

c3+a3 + c3(a+b)
a3+b3 . We nowmultiply

both sides by (a+ b+ c)(a3+ b3)(b3 + c3)(c3 + a3). After some algebra the left-hand side
becomes

L= T [9,2,0]+T [10,1,0]+T [9,1,1]+T [5,3,3]+2T [4,4,3]
+T [6,5,0]+2T [6,4,1]+T [6,3,2]+T [7,4,0]+T [7,3,1],

while the right-hand side transforms into

D= 3(T [4,4,3]+T [7,4,0]+T [6,4,1]+T [7,3,1]).

According to Muirhead’s theorem we have:

1. T [9,2,0] ≥ T [7,4,0],

2. T [10,1,0]≥ T [7,4,0],

3. T [6,5,0] ≥ T [6,4,1],

4. T [6,3,2] ≥ T [4,4,3].

The Schur’s inequality gives us T [4,2,2]+T [8,0,0] ≥ 2T [6,2,0]. After multiplying by abc,
we get:

5. T [5,3,3]+T [9,1,1]≥ T [7,3,1].
Adding up 1,2,3,4, 5, and adding 2T [4,4,3]+T [7,4,0]+2T [6,4,1]+T [7,3,1] to both sides
we get L≥ D. The equality holds if and only if a= b= c.

14. Multiplying the both sides with the common denominator we get

T5,5,5+4T7,5,0+T5,2,2+T9,0,0 ≥ T5,5,2+T6,0,0+2T5,4,0+2T4,2,0+T2,2,2.
By Schur’s and Muirhead’s inequalities we have that T9,0,0+T5,2,2 ≥ 2T7,2,0 ≥ 2T7,1,1. Since
xyz≥ 1 we have that T7,1,1 ≥ T6,0,0. Therefore

T9,0,0+T5,2,2 ≥ 2T6,0,0 ≥ T6,0,0+T4,2,0.
Moreover, Muirhead’s inequality combined with xyz ≥ 1 gives us T7,5,0 ≥ T5,5,2, 2T7,5,0 ≥
2T6,5,1 ≥ 2T5,4,0, T7,5,0 ≥ T6,4,2 ≥ T4,2,0, and T5,5,5 ≥ T2,2,2. Adding these four inequalities to
(1) yields the desired result.
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15. Let ai = exi and let (m1, . . . ,mn), (k1, . . . ,kn) be two permutations of (1, . . . , n) for which
the sequences (3xm1 − xm1+1, . . . ,3xmn − xmn+1) and (2xk1 , . . . , 2xkn) are non-increasing. As
above we assume that xn+1 = xn. Similarly as in the problem 11 from the section 5 we prove
that (2xki) ≺ (3xmi − xmi+1). The function f (x) = ex is convex so the Karamata’s implies the
required result.

16. Hint: Choose xi such that ai = exi . Sort the sequences (2x1− x2, . . . ,2xn− x1) and (x1, . . . ,xn)
in non-increasing order, prove that the first majorizes the second, and apply Karamata’s in-
equality with the convex function f (x) = 1+ ex.

17. Applying the Chebyshev’s inequality first we get

an

b+ c
+

bn

c+a
+

cn

a+b
≥ an+bn+ cn

3
·
(

1
a+b

+
1
b+ c

+
1
c+a

)

.

The Cauchy-Schwartz inequality gives:

2(a+b+ c)
(

1
a+b

+
1
b+ c

+
1
c+a

)

≥ 9,

and the inequalityMn ≥M2 gives

an+bn+ cn

3
≥
(

a+b+ c
3

)n
.

In summary

an

b+ c
+

bn

c+a
+

cn

a+b
≥

(

a+b+ c
3

)n( 1
a+b

+
1
b+ c

+
1
c+a

)

≥ 1
3
· 1
2
·
(

2
3
s
)n−1

·9=

(

2
3

)n−2
sn−1.

18. It is enough to prove that
(√

x1+
1√x1

)

+

(√
x2+

1√x2

)

+ · · ·+
(√
xn+

1√xn

)

≥ n
(

1√x1
+

1√x2
+ · · ·+ 1√xn

)

,

or equivalently
(

1+ x1√x1
+ · · ·+ 1+ xn√xn

)(

1
1+ x1

+
1

1+ x2
+ · · ·+ 1

1+ xn

)

≥ n ·
(

1√x1
+

1√x2
+ · · ·+ 1√xn

)

.

Consider the function f (x) =
√
x+ 1√

x = x+1√
x ,x ∈ (0,+∞). It is easy to verify that f is non-

decreasing on(1,+∞) and that f (x) = f
( 1
x
)

for every x > 0. Furthermore from the given
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conditions it follows that only x1 can be less than 1 and that 1
1+x2

≤ 1− 1
1+x1

= x1
1+x1

. Hence
x2 ≥ 1

x1
. Now it is clear that (in both of the cases x1 ≥ 1 and x1 < 1):

f (x1) = f
(

1
x1

)

≤ f (x1) ≤ ·· · ≤ f (xn).

This means that the sequence
(

1+xk
xk

)n

k=1
is non-decreasing. Thus according to the Cheby-

shev’s inequality we have:
(

1+ x1√x1
+ · · ·+ 1+ xn√xn

)(

1
1+ x1

+
1

1+ x2
+ · · ·+ 1

1+ xn

)

≥ n ·
(

1√x1
+

1√x2
+ · · ·+ 1√xn

)

.

The equality holds if and only if 1
1+x1 = · · · = 1

1+xn , or
1+x1√x1 = · · · = 1+xn√xn , which implies that

x1 = x2 = · · · = xn. Thus the equality holds if and only if x1 = · · · = xn = n−1.

19. Denote by S the set of all members of the society, by A the set of all pairs of friends, and by N
the set of all pairs of enemies. For every x ∈ S, denote by f (x) number of friends of x and by
F(x) number of pairs of friends among enemies of x. It is easy to prove:

q= |A| = 1
2 ∑
x∈S
f (x);

∑
{a,b}∈A

( f (a)+ f (b)) = ∑
x∈S
f 2(x).

If a and b are friends, then the number of their common enemies is equal to (n−2)− ( f (a)−
1)− ( f (b)−1) = n− f (a)− f (b). Thus

1
n ∑
x∈S
F(x) =

1
n ∑
{a,b}∈A

(n− f (a)− f (b)) = q− 1
n ∑
x∈S
f 2(x).

Using the inequality between arithmetic and quadratic mean on the last expression, we get

1
n ∑
x∈S
F(x) ≤ q− 4q

2

n2

and the statement of the problem follows immediately.

20. Consider the partition of plane π into regular hexagons, each having inradius 2. Fix one of
these hexagons, denoted by γ . For any other hexagon x in the partition, there exists a unique
translation τx taking it onto γ . Define the mapping ϕ : π → γ as follows: If A belongs to the
interior of a hexagon x, then ϕ(A) = τx(A) (if A is on the border of some hexagon, it does not
actually matter where its image is).
The total area of the images of the union of the given circles equals S, while the area of the

hexagon γ is 8
√
3. Thus there exists a point B of γ that is covered at least

S
8
√
3
times, i.e.,
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such that ϕ−1(B) consists of at least
S
8
√
3
distinct points of the plane that belong to some of

the circles. For any of these points, take a circle that contains it. All these circles are disjoint,
with total area not less than

π
8
√
3
S ≥ 2S/9.
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Polynomial Equations
Dušan Djukić
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1 Introduction
The title refers to determining polynomials in one or more variables (e.g. with real or complex
coefficients) which satisfy some given relation(s).
The following example illustrates some basic methods:

1. Determine the polynomials P for which 16P(x2) = P(2x)2.

• First method: evaluating at certain points and reducing degree.
Plugging x= 0 in the given relation yields 16P(0) = P(0)2, i.e. P(0) = 0 or 16.

(i) Suppose that P(0) = 0. Then P(x) = xQ(x) for some polynomial Q and 16x2Q(x2) =
4x2Q(2x)2, which reduces to 4Q(x2) = Q(2x)2. Now setting 4Q(x) = R(x) gives us
16R(x2) = R(2x)2. Hence, P(x) = 1

4xR(x), with R satifying the same relation as P.
(ii) Suppose that P(0) = 16. Putting P(x) = xQ(x) + 16 in the given relation we obtain

4xQ(x2) = xQ(2x)2+16Q(2x); henceQ(0) = 0, i.e. Q(x) = xQ1(x) for some polynomial
Q1. Furthermore, x2Q1(x2) = x2Q1(2x)2+8Q1(2x), implying that Q1(0) = 0, so Q1 too
is divisible by x. Thus Q(x) = x2Q1(x). Now suppose that xn is the highest degree
of x dividing Q, and Q(x) = xnR(x), where R(0) �= 0. Then R satisfies 4xn+1R(x2) =
22nxn+1R(2x)2+2n+4R(2x), which implies that R(0) = 0, a contradiction. It follows that
Q≡ 0 and P(x) ≡ 16.

We conclude that P(x) = 16
(1
4x

)n for some n ∈ N0.

• Second method: investigating coefficients.
We start by proving the following lemma (to be used frequently):

Lemma 1. If P(x)2 is a polynomial in x2, then so is either P(x) or P(x)/x.

Proof. Let P(x) = anxn+ an−1xn−1+ · · ·+ a0, an �= 0. The coefficient at x2n−1 is 2anan−1,
from which we get an−1 = 0. Now the coefficient at x2n−3 equals 2anan−3; hence an−3 = 0,
and so on. Continuing in this manner we conclude that an−2k−1 = 0 for k = 0,1,2, . . . , i.e.
P(x) = anxn+an−2xn−2+an−4xn−4+ · · · . �

Since P(x)2 = 16P(x2/4) is a polynomial in x2, we have P(x) = Q(x2) or P(x) = xQ(x2). In
the former case we get 16Q(x4) =Q(4x2)2 and therefore 16Q(x2) =Q(4x)2; in the latter case
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we similarly get 4Q(x2) = Q(4x)2. In either case, Q(x) = R(x2) or Q(x) = xR(x2) for some
polynomial R, so P(x) = xiR(x4) for some i ∈ {0,1,2,3}. Proceeding in this way we find that
P(x) = xiS(x2k) for each k ∈ N and some i ∈ {0,1, . . . ,2k}. Now it is enough to take k with
2k > degP and to conclude that S must be constant. Thus P(x) = cxi for some c∈ R. A simple
verification gives us the general solution P(x) = 16

(1
4x

)n for n ∈ N0.

Investigating zeroes of the unknown polynomial is also counted under the first method.
A majority of problems of this type can be solved by one of the above two methods (although

some cannot, making math more interesting!).

2 Problems with Solutions
1. Find all polynomials P such that P(x)2+P( 1x )

2 = P(x2)P( 1x2 ).

Solution. By the introducing lemma there exists a polynomial Q such that P(x) = Q(x2)
or P(x) = xQ(x2). In the former case Q(x2)2+Q( 1x2 ) = Q(x4)Q( 1x4 ) and therefore Q(x)2+

Q( 1x ) = Q(x2)Q( 1x2 ) (which is precisely the relation fulfilled by P), whereas in the latter case
(similarly) xQ(x)2 + 1

xQ( 1x )
2 = Q(x2)Q( 1x2 ) which is impossible for the left and right hand

side have odd and even degrees, respectively. We conclude that P(x) =Q(x2), where Q is also
a solution of the considered polynomial equation. Considering the solution of the least degree
we find that P must be constant.

2. Do there exist non-linear polynomials P andQ such that P(Q(x)) = (x−1)(x−2) · · · (x−15)?
Solution. Suppose there exist such polynomials. Then degP · degQ = 15, so degP = k ∈
{3,5}. Putting P(x) = c(x−a1) · · · (x−ak) we get c(Q(x)−a1) · · · (Q(x)−ak) = (x−1)(x−
2) · · ·(x− 15). Thus the roots of polynomial Q(x)− ai are distinct and comprise the set
{1,2, . . . ,15}. All these polynomials mutually differ at the last coefficient only. Now, in-
vestigating parity of the remaining (three or five) coefficients we conclude that each of them
has the equally many odd roots. This is impossible, since the total number of odd roots is 8,
not divisible by 3 or 5.

3. Determine all polynomials P for which P(x)2−2= 2P(2x2−1).
Solution. Denote P(1) = a. We have a2−2a−2= 0. Substituting P(x) = (x−1)P1(x)+a in
the initial relation and simplifying yields (x−1)P1(x)2+2aP1(x) = 4(x+1)P1(2x2−1). For
x = 1 we have 2aP1(1) = 8P1(1), which (since a �= 4) gives us P1(1) = 0, i.e. P1(x) = (x−
1)P2(x), so P(x) = (x−1)2P2(x)+a. Suppose that P(x) = (x−1)nQ(x)+a, where Q(1) �= 0.
Substituting in the initial relation and simplifying yields (x− 1)nQ(x)2 + 2aQ(x) = 2(2x+
2)nQ(2x2−1), giving us Q(1) = 0, a contradiction. It follows that P(x) = a.

4. Determine all polynomials P for which P(x)2−1= 4P(x2−4x+1).
Solution. Suppose that P is not constant. Fixing degP = n and comparing coefficients of
both sides we deduce that the coefficients of polynomial P must be rational. On the other
hand, setting x = a with a = a2− 4a+ 1, that is, a = 5±

√
21

2 , we obtain P(a) = b, where
b2− 4b− 1= 0, i.e. b = 2±

√
5. However, this is impossible because P(a) must be of the

form p+q
√
21 for some rational p,q for the coefficients of P are rational. It follows that P(x)

is constant.

5. For which real values of a does there exist a rational function f (x) that satisfies f (x2) =
f (x)2−a?
Solution.Write f as f =P/Qwith P andQ coprime polynomials andQmonic. By comparing
leading coefficients we obtain that P too is monic. The condition of the problem became
P(x2)/Q(x2) = P(x)2/Q(x)2−a. Since P(x2) and Q(x2) are coprime (if, to the contrary, they
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had a zero in common, then so do P andQ), it follows thatQ(x2) =Q(x)2. ThereforeQ(x) = xn
for some n ∈ N. Now we have P(x2) = P(x)2−ax2n.
Let P(x) = a0+a1x+ · · ·+am−1xm−1+ xm. Comparing coefficients of P(x)2 and P(x2) gives
us an−1 = · · · = a2m−n+1 = 0, a2m−n = a/2, a1 = · · · = am−1 = 0 and a0 = 1. This is only
possible if a= 2 and 2m−n= 0, or a= 0.

6. Find all polynomials P satisfying P(x2+1) = P(x)2+1 for all x.
Solution. By the introducing lemma, there is a polynomial Q such that P(x) = Q(x2+ 1) or
P(x) = xQ(x2+ 1). Then Q((x2+ 1)2+ 1) = Q(x2+ 1)2− 1 or (x2+ 1)Q((x2+ 1)2+ 1) =
x2Q(x2 + 1)2 + 1, respectively. Substituting x2 + 1 = y yields Q(y2 + 1) = Q(y)2 + 1 and
yQ(y2+1) = (y−1)Q(y)2+1, respectively.
Suppose that yQ(y2+1) = (y−1)Q(y)2+1. Setting y= 1 we obtain thatQ(2) = 1. Note that,
if a �= 0 and Q(a) = 1, then also aQ(a2+1) = (a−1)+1 and hence Q(a2+1) = 1. We thus
obtain an infinite sequence of points at which Q takes value 1, namely the sequence given by
a0 = 2 and an+1 = a2n+1. Therefore Q≡ 1.
It follows that if Q �≡ 1, then P(x) = Q(x2+1). Now we can easily list all solutions: these are
the polynomials of the form T (T (· · · (T (x)) · · · )), where T (x) = x2+1.

7. If a polynomial P with real coefficients satisfies for all x

P(cosx) = P(sinx),

prove that there exists a polynomialQ such that for all x, P(x) = Q(x4− x2).
Solution. It follows from the condition of the problem that P(−sinx) = P(sinx), so P(−t) =
P(t) for infinitely many t; hence the polynomials P(x) and P(−x) coincide. Therefore P(x) =
S(x2) for some polynomial S. Now S(cos2 x) = S(sin2 x) for all x, so S(1− t) = S(t) for
infinitely many t, which gives us S(x) ≡ S(1− x). This is equivalent to R(x− 1

2 ) = R( 12 − x),
i.e. R(y) ≡ R(−y), where R is the polynomial such that S(x) = R(x− 1

2 ). Now R(x) = T (x2)
for some polynomial T , and finally, P(x) = S(x2) = R(x2− 1

2 ) = T (x4− x2+ 1
4) =Q(x4− x2)

for some polynomialQ.

8. Find all quadruples of polynomials (P1,P2,P3,P4) such that, whenever natural numbers x,y,z,t
satisfy xy− zt = 1, it holds that P1(x)P2(y)−P3(z)P4(t) = 1.
Solution. Clearly P1(x)P2(y) = P2(x)P1(y) for all natural numbers x and y. This implies that
P2(x)/P1(x) does not depend on x. Hence P2= cP1 for some constant c. Analogously, P4= dP3
for some constant d. Now we have cP1(x)P1(y)−dP3(z)P3(t) = 1 for all natural x,y,z,t with
xy− zt = 1. Moreover, we see that P1(x)P1(y) depends only on xy, i.e. f (x) = P1(x)P1(n/x)
is the same for all positive divisors x of natural number n. Since f (x) is a rational function
and the number of divisors x of n can be arbitrarily large, it follows that f is constant in x, i.e.
a polynomial in n. It is easily verified that this is possible only when P1(x) = xn for some n.
Similarly, P3(x) = xm for some m and c(xy)n− d(zt)m = 1. Therefore m = n and c = d = 1,
and finally m= n= 1. So, P1(x) = P2(x) = P3(x) = P4(x) = x.

9. Find all polynomials P(x) with real coefficients that satisfy the equality

P(a−b)+P(b− c)+P(c−a)= 2P(a+b+ c)

for all triples a,b,c of real numbers such that ab+bc+ ca= 0. (IMO 2004.2)
Solution. Let P(x) = a0+a1x+ · · ·+anxn. For every x ∈ R the triple (a,b,c) = (6x,3x,−2x)
satisfies the condition ab+ bc+ ca= 0. Then the condition on P gives us P(3x)+P(5x)+
P(−8x) = 2P(7x) for all x, implying that for all i= 0,1,2, . . . ,n the following equality holds:

(

3i+5i+(−8)i−2 ·7i
)

ai = 0.
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Suppose that ai �= 0. Then K(i) = 3i+ 5i+(−8)i− 2 · 7i = 0. But K(i) is negative for i odd
and positive for i = 0 or i ≥ 6 even. Only for i= 2 and i= 4 do we have K(i) = 0. It follows
that P(x) = a2x2+ a4x4 for some real numbers a2,a4. It is easily verified that all such P(x)
satisfy the required condition.

10. (a) If a real polynomial P(x) satisfies P(x)≥ 0 for all x, show that there exist real polynomi-
als A(x) and B(x) such that P(x) = A(x)2+B(x)2.

(b) If a real polynomial P(x) satisfies P(x) ≥ 0 for all x ≥ 0, show that there exist real
polynomials A(x) and B(x) such that P(x) = A(x)2+ xB(x)2.

Solution. Polynomial P(x) can be written in the form

P(x) = (x−a1)α1 · · · (x−ak)αk · (x2−b1x+ c1) · · · (x2−bmx+ cm), (∗)

where ai,b j,c j are real numbers such that ai are distinct and the polynomials x2−bix+ci have
no real roots.
It follows from the condition P(x) ≥ 0 for all x that all the αi are even, and from the condition
P(x) ≥ 0 for all x ≥ 0 that (∀i) either αi is even or ai < 0. This ensures that each linear
or quadratic factor in (∗) can be written in the required form A2+B2 and/or A2+ xB2. The
well-known formula (a2+ γb2)(c2+ γd2) = (ac+ γbd)2+ γ(ad−bc)2 now gives a required
representation for their product P(x).

11. Prove that if the polynomials P and Q have a real root each and

P(1+ x+Q(x)2) = Q(1+ x+P(x)2),

then P≡ Q.
Solution. Note that there exists x= a for which P(a)2=Q(a)2. This follows from the fact that,
if p and q are the respective real roots of P and Q, then P(p)2−Q(p)2 ≤ 0≤ P(q)2−Q(q)2,
and moreover P2−Q2 is continuous. Now P(b) =Q(b) for b= 1+a+P(a)2. Taking a to be
the largest real number for which P(a) = Q(a) leads to an immediate contradiction.

12. If P and Q are monic polynomials with P(P(x)) = Q(Q(x)), prove that P≡ Q.
Solution. Suppose that R= P−Q �= 0 and that 0< k ≤ n−1 is the degree of R(x). Then

P(P(x))−Q(Q(x)) = [Q(P(x))−Q(Q(x))]+R(P(x)).

Putting Q(x) = xn + · · ·+ a1x+ a0 we have Q(P(x))−Q(Q(x)) = [P(x)n −Q(x)n] + · · ·+
a1[P(x)−Q(x)], where all summands but the first have a degree at most n2−n, while the first
summand equals R(x) ·

(

P(x)n−1+P(x)n−2Q(x)+ · · ·+Q(x)n−1
)

and therefore has the degree
n2−n+k with the leading coefficient n. Hence the degree of Q(P(x))−Q(Q(x)) is n2−n+k.
The degree of R(P(x)) is equal to kn < n2−n+ k, from what we conclude that the degree of
the difference P(P(x))−Q(Q(x)) is n2−n+ k, a contradiction.
In the remaining case when R ≡ c is constant, the condition P(P(x)) = Q(Q(x)) gives us
Q(Q(x)+ c) = Q(Q(x))− c, so the equality Q(y+ c) = Q(y)− c holds for infinitely many y,
implying Q(y+ c) ≡Q(y)− c. But this is only possible for c= 0.

13. Assume that there exist complex polynomials P,Q,R such that

Pa+Qb = Rc,

where a,b,c are natural numbers. Show that 1a + 1
b + 1

c > 1.
Solution. We use the following auxilliary statement.
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Lemma 2. If A,B and C are pairwise coprime polynomials with A+B=C, then the degree
of each of them is less than the number of different zeroes of the polynomial ABC.

Proof. Let

A(x) =
k

∏
i=1

(x− pi)ai , B(x) =
l

∏
i=1

(x−qi)bi , C(x) =
m

∏
i=1

(x− ri)ci .

Writing the condition A+B=C as A(x)C(x)−1+B(x)C(x)−1 = 1 and differentiating it with
respect to x gives us

A(x)C(x)−1
(

k

∑
i=1

ai
x− pi

−
m

∑
i=1

ci
x− ri

)

= −B(x)C(x)−1
(

l

∑
i=1

bi
x−qi

−
m

∑
i=1

ci
x− ri

)

,

from which we see that A(x)/B(x) can be written as a quotient of two polynomials od degrees
not exceeding k+ l+m−1. Our statement now follows from the fact that A and B are coprime.
Apply this statement on polynomials Pa,Qb,Rc. Each of their degrees adegP, bdegQ, cdegR
is less than degP+degQ+degR and hence 1a > degP

degP+degQ+degR , etc. Summing up yields the
desired inequality.
Corollary. “The Last Fermat’s theorem” for polynomials.

14. The lateral surface of a cylinder is divided by n−1 planes parallel to the base andmmeridians
intomn cells (n≥ 1, m≥ 3). Two cells are called neighbors if they have a common side. Prove
that it is possible to write real numbers in the cells, not all zero, so that the number in each
cell equals the sum of the numbers in the neighboring cells, if and only if there exist k, l with

n+1 � k such that cos
2lπ
m

+ cos
kπ
n+1

=
1
2
.

Solution. Denote by ai j the number in the intersection of i-th parallel and j-th meridian.
We assign to the i-th parallel the polynomial pi(x) = ai1+ ai2x+ · · ·+ aimxm−1 and define
p0(x) = pn+1(x) = 0. The property that each number equals the sum of its neighbors can be
written as pi(x) = pi−1(x)+ pi+1(x)+ (xm−1+ x)pi(x) modulo xm−1, i.e.

pi+1(x) = (1− x− xm−1)pi(x)− pi−1(x) (mod xm−1).

This sequence of polynomials is entirely determined by term p1(x). The numbers ai j can be
written in the required way if and only if a polynomial p1(x) �= 0 of degree less than m can be
chosen so that pn+1(x) = 0.
Consider the sequence of polynomials ri(x) given by r0 = 0, r1 = 1 and ri+1 = (1− x−
xm−1)ri − ri−1. Clearly, pn+1(x) ≡ rn+1(x)p1(x) (mod xm− 1). Polynomial p1 �= 0 of de-
gree < m for which pn+1 = 0 exists if and only if rn+1(x) and xm− 1 are not coprime, i.e. if
and only if there exists ε such that εm = 1 and rn+1(ε) = 0. Now consider the sequence (xi)
given by x0 = 0, x1 = 1 and xi+1 = (1− ε− εm−1)xi− xi−1. Let us write c= 1− ε− εm−1 and
denote by u1,u2 the zeroes of polynomial x2−cx+1. The general term of the above recurrent
sequence is xi =

ui1−ui2
u1−u2

if u1 �= u2 and xi = iui1 if u1 = u2. The latter case is clearly impos-

sible. In the former case (u1 �= u2) equality xn+1 = 0 is equivalent to un+11 = un+12 and hence
to ωn+1 = 1, where u1 = u2ω , which holds if and only if (∃u2) u22ω = 1 and u2(1+ ω) = c.
Therefore (1+ ω)2 = c2ω , so

2+ ω + ω̄ = (1− ε − ε̄)2.

Now if ω = cos 2kπn+1 + isin 2kπn+1 and ε = cos 2lπm + isin 2lπm , the above equality becomes the
desired one.
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1 Basic Methods For Solving Functional Equations
• Substituting the values for variables. The most common first attempt is with some constants
(eg. 0 or 1), after that (if possible) some expressions which will make some part of the equation
to become constant. For example if f (x+ y) appears in the equations and if we have found
f (0) then we plug y=−x. Substitutions become less obvious as the difficulty of the problems
increase.

• Mathematical induction. This method relies on using the value f (1) to find all f (n) for n
integer. After that we find f

(1
n

)

and f (r) for rational r. This method is used in problems
where the function is defined on Q and is very useful, especially with easier problems.

• Investigating for injectivity or surjectivity of functions involved in the equaiton. In many of
the problems these facts are not difficult to establish but can be of great importance.

• Finding the fixed points or zeroes of functions. The number of problems using this method is
considerably smaller than the number of problems using some of the previous three methods.
This method is mostly encountered in more difficult problems.

• Using the Cauchy’s equation and equation of its type.

• Investigating the monotonicity and continuity of a function. Continuity is usually given as
additional condition and as the monotonicity it usually serves for reducing the problem to
Cauchy’s equation. If this is not the case, the problem is on the other side of difficulty line.

• Assuming that the function at some point is greater or smaller then the value of the function
for which we want to prove that is the solution. Most often it is used as continuation of the
method of mathematical induction and in the problems in which the range is bounded from
either side.

• Making recurrent relations. This method is usually used with the equations in which the range
is bounded and in the case when we are able to find a relashionship between f ( f (n)), f (n),
and n.
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• Analyzing the set of values for which the function is equal to the assumed solution. The goal
is to prove that the described set is precisely the domain of the function.

• Substituting the function. This method is often used to simplify the given equation and is
seldom of crucial importance.

• Expressing functions as sums of odd and even. Namely each function can be represented
as a sum of one even and one odd function and this can be very handy in treating ”linear”
functional equations involving many functions.

• Treating numbers in a system with basis different than 10. Of course, this can be used only if
the domain is N.

• For the end let us emphasize that it is very important to guess the solution at the beginning.
This can help a lot in finding the appropriate substitutions. Also, at the end of the solution,
DON’T FORGET to verify that your solution satisfies the given condition.

2 Cauchy Equation and Equations of the Cauchy type

The equation f (x+ y) = f (x)+ f (y) is called the Cauchy equation. If its domain is Q, it is well-
known that the solution is given by f (x) = x f (1). That fact is easy to prove using mathematical
induction. The next problem is simply the extention of the domain from Q to R. With a relatively
easy counter-example we can show that the solution to the Cauchy equation in this case doesn’t have
to be f (x) = x f (1). However there are many additional assumptions that forces the general solution
to be of the described form. Namely if a function f satisfies any of the conditions:

• monotonicity on some interval of the real line;

• continuity;

• boundedness on some interval;

• positivity on the ray x≥ 0;

then the general solution to the Cauchy equation f :R → S has to be f (x) = x f (1).
The following equations can be easily reduced to the Cauchy equation.

• All continuous functions f : R → (0,+∞) satisfying f (x+ y) = f (x) f (y) are of the form
f (x) = ax. Namely the function g(x) = log f (x) is continuous and satisfies the Cauchy equa-
tion.

• All continuous functions f : (0,+∞) → R satisfying f (xy) = f (x) + f (y) are of the form
f (x) = loga x. Now the function g(x) = f (ax) is continuous and satisfies the Cauchy equation.

• All continuous functions f : (0,+∞) → (0,+∞) satisfying f (xy) = f (x) f (y) are f (x) = xt ,
where t = loga b and f (a) = b. Indeed the function g(x) = log f (ax) is continuous and satisfies
the Cauchy equation.

3 Problems with Solutions

The following examples should illustrate the previously outlined methods.

Problem 1. Find all functions f :Q → Q such that f (1) = 2 and f (xy) = f (x) f (y)− f (x+ y)+1.
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Solution. This is a classical example of a problem that can be solved using mathematical induction.
Notice that if we set x = 1 and y = n in the original equation we get f (n+ 1) = f (n) + 1, and
since f (1) = 2 we have f (n) = n+ 1 for every natural number n. Similarly for x = 0 and y = n
we get f (0)n = f (n)− 1 = n, i.e. f (0). Now our goal is to find f (z) for each z ∈ Z. Substituting
x = −1 and y= 1 in the original equation gives us f (−1) = 0, and setting x = −1 and y = n gives
f (−n) = − f (n− 1)+ 1= −n+ 1. Hence f (z) = z+ 1 for each z ∈ Z. Now we have to determine

f
(1
n

)

. Plugging x= n and y=
1
n
we get

f (1) = (n+1) f
(1
n

)

− f
(

n+
1
n

)

+1. (1)

Furthermore for x= 1 and y= m+
1
n
we get f

(

m+1+
1
n

)

= f
(

m+
1
n

)

+1, hence by the mathe-

matical induction f
(

m+
1
n

)

= m+ f
(1
n

)

. Iz (1) we now have

f
(1
n

)

=
1
n

+1,

for every natural number n. Furthermore for x = m and y =
1
n
we get f

(m
n

)

=
m
n

+ 1, i.e. f (r) =

r+1, for every positive rational number r. Setting x=−1 and y= r we get f (−r) =− f (r−1)+1=
−r+1 as well hence f (x) = x+1, for each x ∈ Q.
Verification: Since xy+1= (x+1)(y+1)− (x+ y+1)+1, for all x,y ∈ Q, f is the solution to our
equation. �

Problem 2. (Belarus 1997) Find all functions g :R → R such that for arbitrary real numbers x and
y:

g(x+ y)+g(x)g(y) = g(xy)+g(x)+g(y).

Solution. Notice that g(x) = 0 and g(x) = 2 are obviously solutions to the given equation. Using
mathematical induction it is not difficult to prove that if g is not equal to one of these two functions
then g(x) = x for all x ∈ Q. It is also easy to prove that g(r+ x) = r+ g(x) and g(rx) = rg(x),
where r is rational and x real number. Particularly from the second equation for r = −1 we get
g(−x) = −g(x), hence setting y = −x in the initial equation gives g(x)2 = g(x2). This means that
g(x) ≥ 0 for x ≥ 0. Now we use the standard method of extending to R. Assume that g(x) < x.
Choose r ∈ Q such that g(x) < r < x. Then

r > g(x) = g(x− r)+ r≥ r,

which is clearly a contradiction. Similarly from g(x) > x we get another contradiction. Thus we
must have g(x) = x for every x ∈ R. It is easy to verify that all three functions satisfy the given
functional equation. �

Problem 3. The function f : R → R satisfies x+ f (x) = f ( f (x)) for every x ∈ R. Find all solutions
of the equation f ( f (x)) = 0.

Solution. The domain of this function is R, so there isn’t much hope that this can be solved using
mathematical induction. Notice that f ( f (x))− f (x) = x and if f (x) = f (y) then clearly x= y. This
means that the function is injective. Since f ( f (0)) = f (0) + 0 = f (0), because of injectivity we
must have f (0) = 0, implying f ( f (0)) = 0. If there were another x such that f ( f (x)) = 0= f ( f (0)),
injectivity would imply f (x) = f (0) and x= 0. �

Problem 4. Find all injective functions f : N → R that satisfy:

(a) f ( f (m)+ f (n)) = f ( f (m))+ f (n), (b) f (1) = 2, f (2) = 4.
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Solution. Setting m= 1 and n first, and m= n, n= 1 afterwards we get

f ( f (1)+ f (n)) = f ( f (1))+ f (n), f ( f (n)+ f (1)) = f ( f (n))+ f (1).

Let us emphasize that this is one standard idea if the expression on one side is symmetric with
respect to the variables while the expression on the other side is not. Now we have f ( f (n)) =
f (n)− f (1)+ f ( f (1)) = f (n)−2+ f (2) = f (n)+2. From here we conclude that f (n) =m implies
f (m) = m+ 2 and now the induction gives f (m+ 2k) = m+ 2k+ 2, for every k ≥ 0. Specially
if f (1) = 2 then f (2n) = 2n+ 2 for all positive integers n. The injectivity of f gives that at odd
numbers (except 1) the function has to take odd values. Let p be the smallest natural number such
that for some k f (k) = 2p+ 1. We have f (2p+ 2s+ 1) = 2p+ 2s+ 3 for s ≥ 0. Therefore the
numbers 3,5, . . . ,2p−1 are mapped into 1,3, . . . ,2p+1. If f (t) = 1 for some t, then for m= n= t
4 = f (2) = f ( f (t)+ f (t)) = f ( f (t))+ f (t) = 3, which is a contradiction. If for some t such that
f (t) = 3 then f (3+2k) = 5+2k, which is a contradiction to the existence of such t. It follows that
the numbers 3,5, . . . ,2p− 1 are mapped into 5,7, . . . ,2p+ 1. Hence f (3+ 2k) = 5+ 2k. Thus the
solution is f (1) = 2 and f (n) = n+2, for n≥ 2.
It is easy to verify that the function satisfies the given conditions. �
Problem 5. (BMO 1997, 2000) Solve the functional equation

f (x f (x)+ f (y)) = y+ f (x)2, x,y ∈ R.

Solution. In probelms of this type it is usually easy to prove that the functions are injective or
surjective, if the functions are injective/surjective. In this case for x= 0 we get f ( f (y)) = y+ f (0)2.
Since the function on the right-hand side is surjective the same must hold for the function on the
left-hand side. This implies the surjectivity of f . Injectivity is also easy to establish. Now there
exists t such that f (t) = 0 and substitution x= 0 and y= t yields f (0) = t+ f (0)2. For x= t we get
f ( f (y)) = y. Therefore t = f ( f (t)) = f (0) = t+ f (0)2, i.e. f (0) = 0. Replacing x with f (x) gives

f ( f (x)x+ f (y)) = x2+ y,

hence f (x)2 = x2 for every real number x. Consider now the two cases:
First case f (1) = 1. Plugging x = 1 gives f (1+ f (y)) = 1+ y, and after taking squares (1+ y)2 =
f (1+ f (y))2 = (1+ f (y))2 = 1+ 2 f (y) + f (y)2 = 1+ 2 f (y) + y2. Clearly in this case we have
f (y) = y for every real y.
Second case f (1) = −1. Plugging x = −1 gives f (−1+ f (y)) = 1+ y, and after taking squares
(1+ y)2 = f (−1+ f (y))2 = (−1+ f (y))2 = 1−2 f (y)+ f (y)2 = 1−2 f (y)+ y2. Now we conclude
f (y) = −y for every real number y.
It is easy to verify that f (x) = x and f (x) = −x are indeed the solutions. �
Problem 6. (IMO 1979, shortlist) Given a function f : R → R, if for every two real numbers x and
y the equality f (xy+x+y) = f (xy)+ f (x)+ f (y) holds, prove that f (x+y) = f (x)+ f (y) for every
two real numbers x and y.

Solution. This is a clasical example of the equation that solution is based on a careful choice of
values that are plugged in a functional equation. Plugging in x = y = 0 we get f (0) = 0. Plugging
in y = −1 we get f (x) = − f (−x). Plugging in y = 1 we get f (2x+ 1) = 2 f (x)+ f (1) and hence
f (2(u+v+uv)+1)= 2 f (u+v+uv)+ f (1)= 2 f (uv)+2 f (u)+2 f (v)+ f (1) for all real u and v. On
the other hand, plugging in x= u and y= 2v+1 we get f (2(u+v+uv)+1)= f (u+(2v+1)+u(2v+
1)) = f (u) + 2 f (v) + f (1) + f (2uv+ u). Hence it follows that 2 f (uv)+ 2 f (u)+ 2 f (v) + f (1) =
f (u)+2 f (v)+ f (1)+ f (2uv+u), i.e.,

f (2uv+u) = 2 f (uv)+ f (u). (1)

Plugging in v=−1/2 we get 0= 2 f (−u/2)+ f (u)=−2 f (u/2)+ f (u). Hence, f (u) = 2 f (u/2) and
consequently f (2x) = 2 f (x) for all reals. Now (1) reduces to f (2uv+u) = f (2uv)+ f (u). Plugging
in u= y and x= 2uv, we obtain f (x)+ f (y) = f (x+y) for all nonzero reals x and y. Since f (0) = 0,
it trivially holds that f (x+ y) = f (x)+ f (y) when one of x and y is 0. �
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Problem 7. Does there exist a function f :R → R such that f ( f (x)) = x2−2 for every real number
x?

Solution. After some attempts we can see that none of the first three methods leads to a progress.
Notice that the function g of the right-hand side has exactly 2 fixed points and that the function g◦g
has exactly 4 fixed points. Now we will prove that there is no function f such that f ◦ f = g. Assume
the contrary. Let a,b be the fixed points of g, and a,b,c,d the fixed points of g ◦ g. Assume that
g(c) = y. Then c= g(g(c)) = g(y), hence g(g(y)) = g(c) = y and y has to be on of the fixed points of
g◦g. If y= a then from a= g(a) = g(y) = c we get a contradiction. Similarly y �= b, and since y �= c
we get y= d. Thus g(c) = d and g(d) = c. Furthermore we have g( f (x)) = f ( f ( f (x))) = f (g(x)).
Let x0 ∈ {a,b}. We immediately have f (x0) = f (g(x0)) = g( f (x0)), hence f (x0) ∈ {a,b}. Similarly
if x1 ∈ {a,b,c,d} we get f (x1) ∈ {a,b,c,d}, and now we will prove that this is not possible. Take
first f (c) = a. Then f (a) = f ( f (c)) = g(c) = d which is clearly impossible. Similarly f (c) �= b and
f (c) �= c (for otherwise g(c)= c) hence f (c) = d. However we then have f (d) = f ( f (c)) = g(c) = d,
which is a contradiction, again. This proves that the required f doesn’t exist. �
Problem 8. Find all functions f :R+ →R

+ such that f (x) f (y f (x)) = f (x+y) for every two positive
real numbers x,y.

Solution. Obviously f (x) ≡ 1 is one solution to the problem. The idea is to find y such that y f (x) =

x+ y and use this to determine f (x). For every x such that
x

f (x)−1 ≥ 0 we can find such y and
from the given condition we get f (x) = 1. However this is a contradiction since we got that f (x) > 1
implies f (x) = 1. One of the consequences is that f (x) ≤ 1. Assume that f (x) < 1 for some x.
From the given equation we conclude that f is non-increasing (because f (y f (x)) ≤ 1). Let us prove
that f is decreasing. In order to do that it is enough to prove that f (x) < 1, for each x. Assume that

f (x) = 1 for every x∈ (0,a) (a> 0). Substituting x= y=
2a
3
in the given equationwe get the obvious

contradiction. This means that the function is decreasing and hence it is injective. Again everything
will revolve around the idea of getting rid of f (y f (x)). Notice that x+ y> y f (x), therefore

f (x) f (y f (x)) = f (x+ y) = f (y f (x)+ x+ y− y f (x)) = f (y f (x)) f
(

f
(

y f (x)
)

(x+ y− y f (x))
)

,

i.e. f (x) = f
(

f
(

y f (x)
)

(x+ y− y f (x))
)

. The injectivity of f implies that x = f
(

y f (x)
)

(x+ y−
y f (x)). If we plug f (x) = a we get

f (y) =
1

1+ αz
,

where α =
1− f (a)
a f (a)

, and according to our assumption α > 0.

It is easy to verify that f (x) =
1

1+ αx
, for α ∈ R

+, and f (x) ≡ 1 satisfy the equation. �

Problem 9. (IMO 2000, shortlist) Find all pairs of functions f :R → R and g :R → R such that for
every two real numbers x,y the following relation holds:

f (x+g(y)) = x f (y)− y f (x)+g(x).

Solution. Let us first solve the problem under the assumption that g(α) = 0 for some α .
Setting y= α in the given equation yields g(x) = (α +1) f (x)− x f (α). Then the given equation

becomes f (x+g(y)) = (α +1−y) f (x)+( f (y)− f (α))x, so setting y= α +1 we get f (x+n) =mx,
where n = g(α +1) and m= f (α +1)− f (α). Hence f is a linear function, and consequently g is
also linear. If we now substitute f (x) = ax+b and g(x) = cx+d in the given equation and compare
the coefficients, we easily find that

f (x) =
cx− c2
1+ c

and g(x) = cx− c2, c ∈ R\ {−1}.
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Now we prove the existence of α such that g(α) = 0. If f (0) = 0 then putting y = 0 in the given
equation we obtain f (x+g(0)) = g(x), so we can take α = −g(0).
Now assume that f (0) = b �= 0. By replacing x by g(x) in the given equation we obtain f (g(x)+

g(y)) = g(x) f (y)− y f (g(x)) + g(g(x)) and, analogously, f (g(x) + g(y)) = g(y) f (x)− x f (g(y)) +
g(g(y)). The given functional equation for x= 0 gives f (g(y)) = a−by, where a= g(0). In partic-
ular, g is injective and f is surjective, so there exists c ∈ R such that f (c) = 0. Now the above two
relations yield

g(x) f (y)−ay+g(g(x)) = g(y) f (x)−ax+g(g(y)). (1)

Plugging y = c in (1) we get g(g(x)) = g(c) f (x)− ax+ g(g(c))+ ac = k f (x)− ax+ d. Now (1)
becomes g(x) f (y) + k f (x) = g(y) f (x) + k f (y). For y = 0 we have g(x)b+ k f (x) = a f (x) + kb,
whence

g(x) =
a− k
b
f (x)+ k.

Note that g(0) = a �= k = g(c), since g is injective. From the surjectivity of f it follows that g is
surjective as well, so it takes the value 0. �

Problem 10. (IMO 1992, shortlist) Find all functions f : R+ → R
+ which satisfy

f ( f (x))+a f (x) = b(a+b)x.

Solution. This is a typical example of a problem that is solved using recurrent equations. Let us
define xn inductively as xn = f (xn−1), where x0 ≥ 0 is a fixed real number. It follows from the given
equation in f that xn+2 = −axn+1+b(a+b)xn. The general solution to this equation is of the form

xn = λ1bn+ λ2(−a−b)n,

where λ1,λ2 ∈ R satisfy x0 = λ1+λ2 and x1 = λ1b−λ2(a+b). In order to have xn ≥ 0 for all n we
must have λ2 = 0. Hence x0 = λ1 and f (x0) = x1 = λ1b = bx0. Since x0 was arbitrary, we conclude
that f (x) = bx is the only possible solution of the functional equation. It is easily verified that this is
indeed a solution. �

Problem 11. (Vietnam 2003) Let F be the set of all functions f : R+ → R
+ which satisfy the in-

equality f (3x)≥ f ( f (2x))+x, for every positive real number x. Find the largest real number α such
that for all functions f ∈ F: f (x) ≥ α · x.

Solution. We clearly have that
x
2
∈ F , hence α ≤ 1

2
. Furthermore for every function f ∈ F we

have f (x) ≥ x
3
. The idea is the following: Denote

1
3

= α1 and form a sequence {αn} for which

f (x) ≥ αnx and which will (hopefully) tend to
1
2
. This would imply that α ≥ 1

2
, and hence α =

1
2
.

Let us constract a recurrent relation for αk. Assume that f (x) ≥ αkx, for every x ∈ R
+. From the

given inequality we have

f (3x) ≥ f ( f (2x))+ x≥ αk f (2x)+ x≥ αk ·αk ·2x+ x= αk+1 ·3x.

This means that αn+1 =
2α2n +1
3

. Let us prove that limn→+∞ αn =
1
2
. This is a standard problem. It

is easy to prove that the sequence αk is increasing and bounded above by
1
2
. Hence it converges and

its limit α satisfies α =
2α2+1
3

, i.e. α =
1
2
(since α < 1). �

Problem 12. Find all functions f ,g,h : R → R that satisfy

f (x+ y)+g(x− y) = 2h(x)+2h(y).
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Solution. Our first goal is to express f and g using h and get the equation involving h only. First
taking y= x and substituting g(0) = a we get f (2x) = 4h(x)−a. Furthermore by putting y = 0 we
get g(x) = 2h(x)+2b−4h

(x
2

)

+a, where h(0) = b. Now the original equation can be written as

2
[

h
(x+ y
2

)

+h
(x− y
2

)

]

+h(x− y)+b= h(x)+h(y). (2)

LetH(x) = h(x)−b. These ”longer” linear expressions can be easily handled if we express functions
in form of the sum of an even and odd function, i.e. H(x) =He(x)+Ho(x). Substituting this into (2)
and writing the same expressions for (−x,y) and (x,−y) we can add them together and get:

2
[

He
(x− y
2

)

+He
(x+ y
2

)

]

+He(x− y) = He(x)+He(y). (3)

If we set −y in this expression and add to (3) we get (using He(y) = He(−y))

He(x+ y)−He(x− y) = 2He(x)+2He(y).

The last equation is not very difficult. Mathematical induction yields He(r) = αr2, for every rational
number r. From the continuity we get He(x) = αx2. Similar method gives the simple relation for Ho

Ho(x+ y)+Ho(x− y) = 2Ho(x).

This is a Cauchy equation hence Ho(x) = βx. Thus h(x) = αx2+ βx+b and substituting for f and
g we get:

f (x) = αx2+2βx+4b−a, g(x) = αx2+a.

It is easy to verify that these functions satisfy the given conditions.

Problem 13. Find all functions f :Q → Q for which

f (xy) = f (x) f (y)− f (x+ y)+1.

Solve the same problem for the case f : R → R.

Solution. It is not hard to see that for x= y= 0 we get ( f (0)−1)2 = 0, i.e. f (0) = 1. Furthermore,
setting x= 1 and y=−1 gives f (−1) = f (1) f (−1), hence f (−1) = 0 or f (1) = 1. We will separate
this into two cases:

1◦ Let f (−1) = 0. In this innocent-looking problems that are resistent to usual ideas it is some-
times successful to increase the number of variables, i.e. to set yz instead of y:

f (xyz) = f (x) f (yz)− f (x+ yz)+1= f (x)( f (y) f (z)− f (y+ z)+1)− f (x+ yz)+1.

Although it seems that the situation is worse and running out of control, that is not the case.
Namely the expression on the left-hand side is symmetric, while the one on the right-hand side
is not. Writing the same expression for x and equating gives

f (x) f (y+ z)− f (x)+ f (x+ yz) = f (z) f (x+ y)− f (z)+ f (xy+ z). (4)

Setting z= −1 (we couldn’t do that at the beginning, since z= 1 was fixed) we get f (x) f (z−
1)− f (x)+ f (x− y) = f (xy−1), and setting x= 1 in this equality gives

f (y−1)(1− f (1)) = f (1− y)− f (1). (5)

Setting y = 2 gives f (1)(2− f (1)) = 0, i.e. f (1) = 0 or f (1) = 2. This means that we have
two cases here as well:
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1.1◦ If f (1) = 0, then from (5) plugging y+1 instead of y we get f (y) = f (−y). Setting −y
instead of y in the initial equality gives f (xy) = f (x) f (y)− f (x−y)+1, hence f (x+y) =
f (x− y), for every two rational numbers x and y. Specially for x = y we get f (2x) =
f (0) = 1, for all x ∈ Q. However this is a contradiction with f (1) = 0. In this case we
don’t have a solution.

1.2◦ If f (1) = 2, setting y+ 1 instead of y in (5) gives 1− f (y) = f (−y)− 1. It is clear
that we should do the substitution g(x) = 1− f (x) because the previous equality gives
g(−x) = −g(x), i.e. g is odd. Furthermore substituting g into the original equality gives

g(xy) = g(x)+g(y)−g(x)g(y)−g(x+ y). (6)

Setting −y instead of y we get −g(xy) = g(x)− g(y)+ g(x)g(y)− g(x− y), and adding
with (6) yields g(x+y)+g(x−y) = 2g(x). For x= ywe have g(2x) = 2g(x) therefore we
get g(x+y)+g(x−y) = g(2x). This is a the Cauchy equation and since the domain is Q

we get g(x) = rx for some rational number r. Plugging this back to (6) we obtain r=−1,
and easy verification shows that f (x) = 1+ x satisfies the conditions of the problem.

2◦ Let f (1) = 1. Setting z= 1 in (4) we get

f (xy+1)− f (x) f (y+1)+ f (x) = 1,

hence for y= −1 we get f (1− x) = 1, for every rational x. This means that f (x) ≡ 1 and this
function satisfies the given equation.

Now let us solve the problem where f : R → R. Notice that we haven’t used that the range is Q,
hence we conclude that for all rational numbers q f (q) = q+ 1, or f (q) ≡ 1. If f (q) = 1 for all
rational numbers q, it can be easily shown that f (x) ≡ 1. Assume that f (q) �≡ 1. From the above
we have that g(x)+ g(y) = g(x+ y), hence it is enough to prove monotonicity. Substitute x = y in
(6) and use g(2x) = 2g(x) to get g(x2) = −g(x)2. Therefore for every positive r the value g(r) is
non-positive. Hence if y> x, i.e. y= x+ r2 we have g(y) = g(x)+g(r2) ≤ g(x), and the function is
decreasing. This means that f (x) = 1+αx and after some calculation we get f (x) = 1+x. It is easy
to verify that so obtained functions satisfy the given functional equation. �
Problem 14. (IMO 2003, shortlist) LetR+ denote the set of positive real numbers. Find all functions
f : R+ → R

+ that satisfy the following conditions:

(i) f (xyz)+ f (x)+ f (y)+ f (z) = f (√xy) f (√yz) f (√zx)

(ii) f (x) < f (y) for all 1≤ x< y.

Solution. First notice that the solution of this functional equation is not one of the common solutions
that we are used to work with. Namely one of the solutions is f (x) = x+

1
x
which tells us that this

equality is unlikely to be shown reducing to the Cauchy equation. First, setting x= y= z= 1 we get
f (1) = 2 (since f (1) > 0). One of the properties of the solution suggested above is f (x) = f (1/x),
and proving this equality will be our next step. Putting x= ts, y= t

s , z= s
t in (i) gives

f (t) f (s) = f (ts)+ f (t/s). (7)

In particular, for s = 1 the last equality yields f (t) = f (1/t); hence f (t) ≥ f (1) = 2 for each t. It
follows that there exists g(t) ≥ 1 such that f (t) = g(t)+ 1

g(t) . Now it follows by induction from (7)
that g(tn) = g(t)n for every integer n, and therefore g(tq) = g(t)q for every rational q. Consequently,
if t > 1 is fixed, we have f (tq) = aq+a−q, where a= g(t). But since the set of aq (q∈ Q) is dense in
R

+ and f is monotone on (0,1] and [1,∞), it follows that f (tr) = ar+a−r for every real r. Therefore,
if k is such that tk = a, we have

f (x) = xk+ x−k for every x ∈ R. �

218
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Problem 15. Find all functions f : [1,∞) → [1,∞) that satisfy:

(i) f (x) ≤ 2(1+ x) for every x ∈ [1,∞);

(ii) x f (x+1) = f (x)2−1 for every x ∈ [1,∞).

Solution. It is not hard to see that f (x) = x+ 1 is a solution. Let us prove that this is the only
solution. Using the given conditions we get

f (x)2 = x f (x+1)+1≤ x(2(x+1))+1< 2(1+ x)2,

i.e. f (x) ≤
√
2(1+ x). With this we have found the upper bound for f (x). Since our goal is to prove

f (x) = x+1 we will use the same method for lowering the upper bound. Similarly we get

f (x)2 = x f (x+1)+1≤ x(
√
2(x+1))+1< 21/4(1+ x)2.

Now it is clear that we should use induction to prove

f (x) < 21/2
k
(1+ x),

for every k. However this is shown in the same way as the previous two inequalities. Since 21/2k → 1
as k→ +∞, hence for fixed x we can’t have f (x) > x+ 1. This implies f (x) ≤ x+ 1 for every real
number x ≥ 1. It remains to show that f (x) ≥ x+ 1, for x ≥ 1. We will use the similar argument.

From the fact that the range is [1,+∞) we get
f (x)2−1
x

= f (x+1) ≥ 1, i.e. f (x) ≥
√
x+1> x1/2.

We further have f (x)2 = 1+ x f (x+1) > 1+ x
√
x+2> x3/2 and similarly by induction

f (x) > x1−1/2
k
.

Passing to the limit we further have f (x) ≥ x. Now again from the given equality we get f (x)2 =

1+ x f (x+1) ≥ (x+1/2)2, i.el f (x) ≥ x+1/2. Using the induction we get f (x) ≥ x+1− 1
2k
, and

passing to the limit we get the required inequality f (x) ≥ x+1. �

Problem 16. (IMO 1999, probelm 6) Find all functions f : R → R such that

f (x− f (y)) = f ( f (y))+ x f (y)+ f (x)−1.

Solution. Let A= { f (x) |x ∈ R}, i.e. A= f (R). We will determine the value of the function on A.
Let x= f (y) ∈ A, for some y. From the given equality we have f (0) = f (x)+ x2+ f (x)−1, i.e.

f (x) =
c+1
2

− x
2

2
,

where f (0) = c. Now it is clear that we have to analyze set A further. Setting x = y = 0 in the
original equation we get f (−c) = f (c) + c− 1, hence c �= 0. Furthermore, plugging y = 0 in the
original equation we get f (x− c)− f (x) = cx+ f (c)−1. Since the range of the function (on x) on
the right-hand side is entire R, we get { f (x−c)− f (x) |x∈ R}= R, i.e. A−A= R. Hence for every
real number x there are real numbers y1,y2 ∈ A such that x= y1− y2. Now we have

f (x) = f (y1− y2) = f (y1− f (z)) = f ( f (z))+ y1 f (z)+ f (y1)−1

= f (y1)+ f (y2)+ y1y2−1= c− x
2

2
.

From the original equation we easily get c = 1. It is easy to show that the function f (x) = 1− x
2

2
satisfies the given equation. �
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Problem 17. Given an integer n, let f :R →R be a continuous function satisfying f (0) = 0, f (1) =
1, and f (n)(x) = x, for every x ∈ [0,1]. Prove that f (x) = x for each x ∈ [0,1].

Solution. First from f (x) = f (y) we have f (n)(x) = f (n)(y), hence f is injective. The idea for what
follows is clear once we look at the graphical representation. Namely from the picture it can be
easily deduced that the function has to be strictly increasing. Let us prove that formally. Assume the
contrary, that for some two real numbers x1 < x2 we have f (x1) ≥ f (x2). The continuity on [0,x1]
implies that there is some c such that f (c) = f (x2), which contradicts the injectivity of f . Now if
x< f (x), we get f (x) < f ( f (x)) etc. x< f (n)(x) = x. Similarly we get a contradiction if we assume
that x> f (x). Hence for each x ∈ [0,1] we must have f (x) = x. �
Problem 18. Find all functions f : (0,+∞) → (0,+∞) that satisfy f ( f (x)+ y) = x f (1+ xy) for all
x,y ∈ (0,+∞).

Solution. Clearly f (x) =
1
x
is one solution to the functional equation. Let us prove that the function

is non-increasing. Assume the contrary that for some 0< x< y we have 0 < f (x) < f (y). We will

consider the expression of the form z =
y f (y)− x f (x)

y− x since it is positive and bigger then f (y). We

first plug (x,z− f (y)) instead of (x,y) in the original equation, then we plug z− f (x) instead of y,
we get x= y, which is a contradiction. Hence the function is non-decreasing.
Let us prove that f (1) = 1. Let f (1) �= 1. Substituting x= 1 we get f ( f (1)+y) = f (1+y), hence

f (u+ | f (1)− 1|) = f (u) for u > 1. Therefore the function is periodic on the interval (1,+∞), and
since it is monotone it is constant. However we then conclude that the left-hand side of the original
equation constant and the right-hand side is not. Thus we must have f (1) = 1. Let us prove that

f (x) =
1
x
for x> 1. Indeed for y= 1− 1

x
the given equality gives f

(

f (x)− 1
x

)

= x f (x). If f (x) >
1
x

we have f
(

f (x)− 1
x

+ 1
)

≤ f (1) = 1 and x f (x) > 1. If f (x) <
1
x
we have f

(

f (x)− 1
x

+ 1
)

≥

f (1) = 1, and x f (x) < 1. Hence f (x) =
1
x
. If x< 1, plugging y=

1
x
we get

f
(

f (x)+
1
x

)

= x f (2) =
x
2
,

and since
1
x
≥ 1, we get f (x)+

1
x

=
2
x
, i.e. f (x) =

1
x
in this case, too. This means that f (x) =

1
x
for

all positive real numbers x. �
Problem 19. (Bulgaria 1998) Prove that there is no function f :R+ → R

+ such that f (x)2 ≥ f (x+
y)( f (x)+ y) for every two positive real numbers x and y.

Solution. The common idea for the problems of this type is to prove that f (y) < 0 for some y > 0
which will lead us to the obvious contradiction. We can also see that it is sufficient to prove that
f (x)− f (x+ 1) ≥ c > 0, for every x because the simple addition gives f (x)− f (x+m) ≥ mc. For
sufficiently largem this implies f (x+m) < 0. Hence our goal is finding c such that f (x)− f (x+1)≥
c, for every x. Assume that such function exists. From the given inequality we get f (x)− f (x+y) ≥
f (x+ y)y
f (x)

and the function is obviously decreasing. Also from the given equality we can conclude

that
f (x)− f (x+ y)≥ f (x)y

f (x)+ y
.

Let n be a natural number such that f (x+ 1)n ≥ 1 (such number clearly exists). Notice that for
0≤ k ≤ n−1 the following inequality holds

f
(

x+
k
n

)

− f
(

x+
k+1
n

)

≥
f
(

x+ k
n

)

1
n

f
(

x+ k
n

)

+ 1
n

≥ 1
2n

,
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and adding similar realitions for all described k yields f (x)− f (x+1) ≥ 1
2
which is a contradiction.

�
Problem 20. Let f : N → N be a function satisfying

f (1) = 2, f (2) = 1, f (3n) = 3 f (n), f (3n+1) = 3 f (n)+2, f (3n+2) = 3 f (n)+1.

Find the number of integers n≤ 2006 for which f (n) = 2n.

Solution. This is a typical problem in which the numbers should be considered in some base different
than 10. For this situation the base 3 is doing the job. Let us calculate f (n) for n ≤ 8 in an attempt
to guess the solution. Clearly the given equation can have only one solution.

f ((1)3) = (2)3, f ((2)3) = (1)3, f ((10)3) = 6= (20)3, f ((11)3) = 8= (22)3,

f ((12)3) = 7= (21)3, f ((20)3) = 3= (10)3, f ((21)3) = 5= (12)3, f ((22)3) = 4= (11)3.

Now we see that f (n) is obtained from n by changing each digit 2 by 1, and conversely. This can
be now easily shown by induction. It is clear that f (n) = 2n if and only if in the system with base
3 n doesn’t contain any digit 1 (because this would imply f (n) < 2n). Now it is easy to count the
number of such n’s. The answer is 127. �

Problem 21. (BMO 2003, shortlist) Find all possible values for f
(2004
2003

)

if f :Q → [0,+∞) is the
function satisfying the conditions:

(i) f (xy) = f (x) f (y) for all x,y ∈ Q;

(ii) f (x) ≤ 1⇒ f (x+1) ≤ 1 for all x ∈ Q;

(iii) f
(2003
2002

)

= 2.

Solution. Notice that from (i) and (ii) we conclude that f (x) > 0, for every rational x. Now (i) implies
that for x = y = 1 we get f (1) = 0 and similarly for x = y = −1 we get f (−1) = 1. By induction
f (x) ≤ 1 for every integer x. For f (x) ≤ f (y) from f

(y
x

)

f (y) = f (x) we have that f
(y
x

)

≤ 1, and

according to (ii) f
(y
x

+1
)

≤ 1. This implies

f (x+ y) = f
( y
x

+1
)

f (x) ≤ f (x),

hence f (x+ y) ≤ max{ f (x), f (y)}, for every x,y ∈ Q. Now you might wonder how did we get this
idea. There is one often neglected fact that for every two relatively prime numbers u and v, there are
integers a and b such that au+ bv= 1. What is all of this good for? We got that f (1) = 1, and we
know that f (x) ≤ 1 for all x ∈ Z and since 1 is the maximum of the function on Z and since we have
the previous inequality our goal is to show that the value of the function is 1 for a bigger class of
integers. We will do this for prime numbers. If for every prime pwe have f (p) = 1 then f (x) = 1 for
every integer implying f (x) ≡ 1 which contradicts (iii). Assume therefore that f (p) �= 1 for some
p ∈ P. There are a and b such that ap+bq= 1 implying f (1) = f (ap+bq)≤max{ f (ap), f (bq)}.
Now we must have f (bq) = 1 implying that f (q) = 1 for every other prime number q. From (iii) we
have

f
(2003
2002

)

=
f (2003)

f (2) f (7) f (11) f (13)
= 2,

hence only one of the numbers f (2), f (7), f (11), f (13) is equal to 1/2. Thus f (3) = f (167) =
f (2003) giving:

f
(2004
2003

)

=
f (2)2 f (3) f (167)

f (2003)
= f (2)2.
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If f (2) = 1/2 then f
(2003
2002

)

=
1
4
, otherwise it is 1.

It remains to construct one function for each of the given values. For the first value it is the
multiplicative function taking the value 1/2 at the point 2, and 1 for all other prime numbers; in the
second case it is a the multiplicative function that takes the value 1/2 at, for example, 7 and takes 1
at all other prime numbers. For these functions we only need to verify the condition (ii), but that is
also very easy to verify. �
Problem 22. Let I = [0,1], G = I× I and k ∈ N. Find all f : G→ I such that for all x,y,z ∈ I the
following statements hold:

(i) f ( f (x,y),z) = f (x, f (y,z));

(ii) f (x,1) = x, f (x,y) = f (y,x);

(ii) f (zx,zy) = zk f (x,y) for every x,y,z ∈ I, where k is a fixed real number.

Solution. The function of several variables appears in this problem. In most cases we use the
same methods as in the case of a single-variable functions. From the condition (ii) we get f (1,0) =
f (0,1) = 0, and from (iii) we get f (0,x) = f (x,0) = xk f (1,0) = 0. This means that f is entirely
defined on the edge of the region G. Assume therefore that 0< x≤ y< 1. Notice that the condition
(ii) gives the value for one class of pairs from G and that each pair in G can be reduced to one of the
members of the class. This implies

f (x,y) = f (y,x) = yk f
(

1,
x
y

)

= yk−1x.

This can be written as f (x,y) =min(x,y)(max(u,v))k−1 for all 0< x,y< 1. Let us find all possible

values for k. Let 0< x≤ 1
2
≤ y< 1. From the condition (i), and the already obtained results we get

f
(

f
(

x,
1
2

)

,y
)

= f
(

x
(1
2

)k−1
,y

)

= f
(

x, f
(1
2

))

= f
(

x,
1
2
yk−1

)

.

Let us now consider x ≤ 2k−1y in order to simplify the expression to the form f
(

x,
1
2
yk−1

)

=

x
( y
2

)k−1
, and if we take x for which 2x ≤ yk−1 we get k− 1 = (k− 1)2, i.e. k = 1 or k = 2.

For k = 1 the solution is f (x,y) =min(x,y), and for k = 2 the solution is f (x,y) = xy. It is easy to
verify that both solutions satisfy the given conditions. �

Problem 23. (APMO 1989) Find all strictly increasing functions f :R → R such that

f (x)+g(x) = 2x,

where g is the inverse of f .

Solution. Clearly every function of the form x+ d is the solution of the given equation. Another
useful idea appears in this problem. Namely denote by Sd the the set of all numbers x for which
f (x) = x+ d. Our goal is to prove that Sd = R. Assume that Sd is non-empty. Let us prove that
for x ∈ Sd we have x+d ∈ Sd as well. Since f (x) = x+d, according to the definition of the inverse
function we have g(x+d) = x, and the given equation implies f (x+d) = x+2d, i.e. x+d ∈ Sd . Let
us prove that the sets Sd′ are empty, where d′ < d. From the above we have that each of those sets is
infinite, i.e. if x belongs to some of them, then each x+ kd belongs to it as well. Let us use this to
get the contradiction. More precisely we want to prove that if x ∈ Sd and x≤ y≤ x+(d−d′), then
y �∈ Sd′ . Assume the contrary. From the monotonicity we have y+d′ = f (y) ≥ f (x) = x+d, which
is a contradiction to our assumption. By further induction we prove that every y satisfying

x+ k(d−d′) ≤ y< x+(k+1)(d−d′),
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can’t be a member of Sd′ . However this is a contradiction with the previously established properties
of the sets Sd and Sd′ . Similarly if d′ > d switching the roles of d and d′ gives a contradiction.
Simple verification shows that each f (x) = x+d satisfies the given functional equation. �

Problem 24. Find all functions h :N → N that satisfy

h(h(n))+h(n+1)= n+2.

Solution. Notice that we have both h(h(n)) and h(n+1), hence it is not possible to form a recurrent
equation. We have to use another approach to this problem. Let us first calculate h(1) and h(2).
Setting n= 1 gives h(h(1))+h(2) = 3, therefore h(h(1))≤ 2 and h(2) ≤ 2. Let us consider the two
cases:

1◦ h(2) = 1. Then h(h(1)) = 2. Plugging n= 2 in the given equality gives 4= h(h(2))+h(3) =
h(1)+ h(3). Let h(1) = k. It is clear that k �= 1 and k �= 2, and that k ≤ 3. This means that
k = 3, hence h(3) = 1. However from 2 = h(h(1)) = h(3) = 1 we get a contradiction. This
means that there are no solutions in this case.

2◦ h(2) = 2. Then h(h(1)) = 1. From the equation for n = 2 we get h(3) = 2. Setting n= 3,4,5
we get h(4) = 3,h(5) = 4,h(6) = 4, and by induction we easily prove that h(n) ≥ 2, for
n ≥ 2. This means that h(1) = 1. Clearly there is at most one function satisfying the given
equality. Hence it is enough to guess some function and prove that it indeed solves the equation
(induction or something similar sounds fine). The solution is

h(n) = 
nα�+1,

where α =
−1+

√
5

2
(this constant can be easily found α2 + α = 1). Proof that this is a

solution uses some properties of the integer part (although it is not completely trivial). �

Problem 25. (IMO 2004, shortlist) Find all functions f : R → R satisfying the equality

f (x2+ y2+2 f (xy)) = f (x+ y)2.

Solution. Let us make the substitution z = x+ y, t = xy. Given z,t ∈ R, x,y are real if and only if
4t ≤ z2. Define g(x) = 2( f (x)− x). Now the given functional equation transforms into

f
(

z2+g(t)
)

= ( f (z))2 for all t,z ∈ R with z2 ≥ 4t. (8)

Let us set c= g(0) = 2 f (0). Substituting t = 0 into (8) gives us

f (z2+ c) = ( f (z))2 for all z ∈ R. (9)

If c< 0, then taking z such that z2+c= 0, we obtain from (9) that f (z)2 = c/2, which is impossible;
hence c≥ 0. We also observe that

x> c implies f (x) ≥ 0. (10)

If g is a constant function, we easily find that c= 0 and therefore f (x) = x, which is indeed a solution.
Suppose g is nonconstant, and let a,b∈R be such that g(a)−g(b)= d > 0. For some sufficiently

large K and each u,v≥K with v2−u2 = d the equality u2+g(a) = v2+g(b) by (8) and (10) implies
f (u) = f (v). This further leads to g(u)−g(v) = 2(v−u) = d

u+
√
u2+d

. Therefore every value from

some suitably chosen segment [δ ,2δ ] can be expressed as g(u)− g(v), with u and v bounded from
above by someM.
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Consider any x,y with y > x ≥ 2
√
M and δ < y2− x2 < 2δ . By the above considerations, there

exist u,v≤M such that g(u)−g(v) = y2−x2, i.e., x2+g(u) = y2+g(v). Since x2 ≥ 4u and y2 ≥ 4v,
(8) leads to f (x)2 = f (y)2. Moreover, if we assume w.l.o.g. that 4M ≥ c2, we conclude from (10)
that f (x) = f (y). Since this holds for any x,y ≥ 2

√
M with y2− x2 ∈ [δ ,2δ ], it follows that f (x) is

eventually constant, say f (x) = k for x≥ N = 2
√
M. Setting x> N in (9) we obtain k2 = k, so k = 0

or k = 1.
By (9) we have f (−z) = ± f (z), and thus | f (z)| ≤ 1 for all z≤−N. Hence g(u) = 2 f (u)−2u≥

−2− 2u for u ≤ −N, which implies that g is unbounded. Hence for each z there exists t such that
z2+g(t) > N, and consequently f (z)2 = f (z2+g(t)) = k= k2. Therefore f (z) = ±k for each z.
If k= 0, then f (x) ≡ 0, which is clearly a solution. Assume k= 1. Then c= 2 f (0) = 2 (because

c ≥ 0), which together with (10) implies f (x) = 1 for all x ≥ 2. Suppose that f (t) = −1 for some
t < 2. Then t−g(t) = 3t+2> 4t. If also t−g(t)≥ 0, then for some z∈Rwe have z2 = t−g(t) > 4t,
which by (8) leads to f (z)2 = f (z2+ g(t)) = f (t) = −1, which is impossible. Hence t− g(t) < 0,
giving us t < −2/3. On the other hand, if X is any subset of (−∞,−2/3), the function f defined by
f (x) = −1 for x ∈ X and f (x) = 1 satisfies the requirements of the problem.
To sum up, the solutions are f (x) = x, f (x) = 0 and all functions of the form

f (x) =

{

1, x �∈ X ,
−1, x ∈ X ,

where X ⊂ (−∞,−2/3). �

4 Problems for Independent Study
Most of the ideas for solving the problems below are already mentioned in the introduction or in the
section with solved problems. The difficulty of the problems vary as well as the range of ideas used
to solve them. Before solving the problems we highly encourage you to first solve (or look at the
solutions) the problems from the previous section. Some of the problems are quite difficult.

1. Find all functions f :Q → Q that satisfy f (x+ y) = f (x)+ f (y)+ xy.

2. Find all functions f : Z → Z for which we have f (0) = 1 and f ( f (n)) = f ( f (n+2)+2) = n,
for every natural number n.

3. Find all functions f : N → N for which f (n) is a square of an integer for all n ∈ N, and that
satisfy f (m+n) = f (m)+ f (n)+2mn for all m,n ∈ N.

4. Find all functions f : R → R that satisfy f ((x− y)2) = f (x)2−2x f (y)+ y2.

5. Let n ∈ N. Find all monotone functions f :R → R such that

f (x+ f (y)) = f (x)+ yn.

6. (USA 2002) Find all functions f : R → R which satisfy the equality f (x2 − y2) = x f (x)−
y f (y).

7. (Mathematical High Schol, Belgrade 2004) Find all functions f : N → N such that f ( f (m)+
f (n)) = m+n for every two natural numbers m and n.

8. Find all continuous functions f :R → R such that f (xy) = x f (y)+ y f (x).

9. (IMO 1983, problem 1) Find all functions f : R → R such that

(i) f (x f (y)) = y f (x), for all x,y ∈ R;
(ii) f (x) → 0 as x→ +∞.
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10. Let f : N → N be strictly increasing function that satisfies f ( f (n)) = 3n for every natural
number n. Determine f (2006).

11. (IMO 1989, shortlist) Let 0 < a < 1 be a real number and f continuous function on [0,1]
which satisfies f (0) = 0, f (1) = 1, and

f
(x+ y
2

)

= (1−a) f (x)+a f (y),

for every two real numbers x,y ∈ [0,1] such that x≤ y. Determine f
(1
7

)

.

12. (IMO 1996, shortlist) Let f :R → R be the function such that | f (x)| ≤ 1 and

f
(

x+
13
42

)

+ f (x) = f
(

x+
1
6

)

+ f
(

x+
1
7

)

.

Prove that f is periodic.

13. (BMO 2003, problem 3) Find all functions f :Q → R that satisfy:

(i) f (x+ y)− y f (x)− x f (y) = f (x) f (y)− x− y+ xy for every x, y ∈ Q;
(ii) f (x) = 2 f (x+1)+2+ x, for every x ∈ Q;
(iii) f (1)+1> 0.

14. (IMO 1990, problem 4) Determine the function f :Q+ → Q
+ such that

f (x f (y)) =
f (x)
y

, for all x,y ∈ Q
+.

15. (IMO 2002, shortlist) Find all functions f :R → R such that

f ( f (x)+ y) = 2x+ f ( f (y)− x).

16. (Iran 1997) Let f : R → R be an increasing function such that for all positive real numbers x
and y:

f (x+ y)+ f ( f (x)+ f (y)) = f ( f (x+ f (y))+ f (y+ f (x))).

Prove that f ( f (x)) = x.

17. (IMO 1992, problem 2) Find all functions f : R → R, such that f (x2+ f (y)) = y+ f (x)2 for
all x,y ∈ R.

18. (IMO 1994, problem 5) Let S be the set of all real numbers strictly greater than -1. Find all
functions f : S→ S that satisfy the following two conditions:

(i) f (x+ f (y)+ x f (y)) = y+ f (x)+ y f (x) for all x, y ∈ S;

(ii)
f (x)
x
is strictly increasing on each of the intervals−1< x< 0 and 0< x.

19. (IMO 1994, shortlist) Find all functions f :R+ → R such that

f (x) f (y) = yα f (x/2)+ xβ f (y/2), for all x,y ∈ R
+.

20. (IMO 2002, problem 5) Find all functions f : R → R such that

( f (x)+ f (z))( f (y)+ f (t)) = f (xy− zt)+ f (xt+ yz).
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21. (Vietnam 2005) Find all values for a real parameter α for which there exists exactly one
function f : R → R satisfying

f (x2+ y+ f (y)) = f (x)2+ α · y.

22. (IMO 1998, problem 3) Find the least possible value for f (1998)where f :N→N is a function
that satisfies

f (n2 f (m)) = mf (n)2.

23. Does there exist a function f : N → N such that

f ( f (n−1)) = f (n+1)− f (n)

for each natural number n?

24. (IMO 1987, problem 4) Does there exist a function f :N0→N0 such that f ( f (n)) = n+1987?

25. Assume that the function f : N → N satisfies f (n+1) > f ( f (n)), for every n ∈ N. Prove that
f (n) = n for every n.

26. Find all functions f : N0→ N0, that satisfy:

(i) 2 f (m2+n2) = f (m)2+ f (n)2, for every two natural numbersm and n;
(ii) If m≥ n then f (m2) ≥ f (n2).

27. Find all functions f : N0→ N0 that satisfy:

(i) f (2) = 2;
(ii) f (mn) = f (m) f (n) for every two relatively prime natural numbers m and n;
(iii) f (m) < f (n) whenever m< n.

28. Find all functions f : N → [1,∞) that satisfy conditions (i) and (ii9) of the previous problem
and the condition (ii) is modified to require the equality for every two natural numbers m and
n.

29. Given a natural number k, find all functions f :N0 → N0 for which

f ( f (n))+ f (n) = 2n+3k,

for every n ∈ N0.

30. (Vijetnam 2005) Find all functions f : R → R that satisfy f ( f (x− y)) = f (x) f (y)− f (x)+
f (y)− xy.

31. (China 1996) The function f :R→R satisfy f (x3+y3) = (x+y)
(

f (x)2− f (x) f (y)+ f (y)2
)

,
for all real numbers x and y. Prove that f (1996x) = 1996 f (x) for every x ∈ R.

32. Find all functions f : R → R that satisfy:

(i) f (x+ y) = f (x)+ f (y) for every two real numbers x and y;

(ii) f
(1
x

)

=
f (x)
x2

for x �= 0.

33. (IMO 1989, shortlist) A function f :Q → R satisfy the following conditions:

(i) f (0) = 0, f (α) > 0 za α �= 0;
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(ii) f (αβ ) = f (α) f (β ) i f (α + β ) ≤ f (α)+ f (β ), for all α,β ∈ Q;

(iii) f (m) ≤ 1989 za m ∈ Z.

Prove that f (α + β ) =max{ f (α), f (β )} whenever f (α) �= f (β ).

34. Find all functions f : R → R such that for every two real numbers x �= y the equality

f
(x+ y
x− y

)

=
f (x)+ f (y)
f (x)− f (y)

is satisfied.

35. Find all functions f :Q+ → Q
+ satisfying:

(i) f (x+1) = f (x)+1 for all x ∈ Q
+;

(ii) f (x3) = f (x)3 for all x ∈ Q
+.

36. Find all continuous functions f :R → R that satisfy the equality

f (x+ y)+ f (xy) = f (x)+ f (y)+ f (xy+1).

37. Find all continuous functions f ,g,h,k :R → R that satisfy the equality

f (x+ y)+g(x− y) = 2h(x)+2k(y).

38. (IMO 1996, shortlist) Find all functions f :N0 → N0 such that

f (m+ f (n)) = f ( f (m))+ f (n).

39. (IMO 1995, shortlist) Does there exist a function f :R → R satisfying the conditions:

(i) There exists a positive real numberM such that −M ≤ f (x) ≤M for all x ∈ R;

(ii) f (1) = 1;

(iii) If x �= 0 then f
(

x+
1
x2

)

= f (x)+

[

f
(1
x

)

]2
?

40. (Belarus) Find all continuous functions f : R → R that satisfy

f ( f (x)) = f (x)+2x.

41. Prove that if the function f : R+ → R satisfy the equality

f
( x+ y
2

)

+ f
( 2xy
x+ y

)

= f (x)+ f (y),

the it satisfy the equality 2 f (√xy) = f (x)+ f (y) as well.

42. Find all continuous functions f : (0,∞) → (0,∞) that satisfy

f (x) f (y) = f (xy)+ f (x/y).

43. Prove that there is no function f : R → R that satisfy the inequality f (y) > (y− x) f (x)2, for
every two real numbers x and y.
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44. (IMC 2001) Prove that there doesn’t exist a function f :R → R for which f (0) > 0 and

f (x+ y) ≥ f (x)+ y f ( f (x)).

45. (Romania 1998) Find all functions u :R → R for which there exists a strictly monotone func-
tion f :R → R such that

f (x+ y) = f (x)u(y)+ f (y), ∀x,y ∈ R.

46. (Iran 1999) Find all functions f :R → R for which

f ( f (x)+ y) = f (x2− y)+4 f (x)y.

47. (IMO 1988, problem 3) A function f :N → N satisfies:

(i) f (1) = 1, f (3) = 3;
(ii) f (2n) = f (n);
(iii) f (4n+1) = 2 f (2n+1)− f (n) and f (4n+3) = 3 f (2n+1)−2 f (n),

for every natural number n ∈ N. Find all natural numbers n≤ 1998 such that f (n) = n.

48. (IMO 2000, shortlist) Given a function F : N0 → N0, assume that for n ≥ 0 the following
relations hold:

(i) F(4n) = F(2n)+F(n);
(ii) F(4n+2) = F(4n)+1;
(iii) F(2n+1) = F(2n)+1.

Prove that for every natural number m, the number of positive integers n such that 0≤ n< 2m
and F(4n) = F(3n) is equal to F(2m+1).

49. Let f :Q×Q→ Q
+ be a function satisfying

f (xy,z) = f (x,z) f (y,z), f (z,xy) = f (z,x) f (z,y), f (x,1− x) = 1,

for all rational numbers x,y,z. Prove that f (x,x) = 1, f (x,−x) = 1, and f (x,y) f (y,x) = 1.

50. Find all functions f : N×N → R that satisfy

f (x,x) = x, f (x,y) = f (y,x), (x+ y) f (x,y) = y f (x,x+ y).
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1 General Properties
AMonomial in variable x is an expression of the form cxk, where c is a constant and k a nonnegative
integer. Constant c can be e.g. an integer, rational, real or complex number.
A Polynomial in x is a sum of finitely many monomials in x. In other words, it is an expression

of the form
P(x) = anxn+an−1+ · · ·+a1x+a0. (∗)

If only two or three of the above summands are nonzero, P is said to be a binomial and trinomial,
respectively.
The constants a0, . . . ,an in (∗) are the coefficients of polynomial P. The set of polynomials with

the coefficients in set A is denoted by A[x] - for instance, R[x] is the set of polynomials with real
coefficients.
We can assume in (∗) w.l.o.g. that an �= 0 (if an = 0, the summand anxn can be erased without

changing the polynomial). Then the exponent n is called the degree of polynomial P and denoted
by degP. In particular, polynomials of degree one, two and three are called linear, quadratic and
cubic. A nonzero constant polynomial has degree 0, while the zero-polynomialP(x) ≡ 0 is assigned
the degree−∞ for reasons soon to become clear.

Example 1. P(x) = x3(x+ 1)+ (1− x2)2 = 2x4+ x3− 2x2+ 1 is a polynomial with integer coeffi-
cients of degree 4.
Q(x) = 0x2−

√
2x+3 is a linear polynomial with real coefficients.

R(x) =
√
x2 = |x|, S(x) = 1

x and T (x) =
√
2x+1 are not polynomials.

Polynomials can be added, subtracted or multiplied, and the result will be a polynomial too:

A(x) = a0+a1x+ · · ·+anxn, B(x) = b0+b1x+ · · ·+bmxm
A(x)±B(x) = (a0−b0)+ (a1−b1)x+ · · · ,
A(x)B(x) = a0b0+(a0b1+a1b0)x+ · · ·+anbmxm+n.

The behavior of the degrees of the polynomials under these operations is clear:
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Theorem 1. If A and B are two polynomials then:

(i) deg(A±B)≤max(degA,degB), with the equality if degA �= degB.

(ii) deg(A ·B) = degA+degB. �

The conventional equality deg0 = −∞ actually arose from these properties of degrees, as else
the equality (ii) would not be always true.
Unlike a sum, difference and product, a quotient of two polynomials is not necessarily a polyno-

mial. Instead, like integers, they can be divided with a residue.

Theorem 2. Given polynomials A and B �= 0, there are unique polynomials Q (quotient) and R
(residue) such that

A= BQ+R and degR< degB.

Proof. Let A(x) = anxn+ · · ·+a0 and B(x) = bkxk+ · · ·+b0, where anbk �= 0. Assume k is fixed and
use induction on n. For n< k the statement is trivial. Suppose that n= N ≥ k and that the statement
is true for n < N. Then A1(x) = A(x)− an

bk
xn−kB(x) is a polynomial of degree less than n (for its

coefficient at xn iz zero); hence by the inductive assumption there are unique polynomials Q1 and R
such that A1 = BQ1+R and degR. But this also implies

A= BQ+R, where Q(x) =
an
bk
xn−k+Q1(x) . �

Example 2. The quotient upon division of A(x) = x3+ x2−1 by B(x) = x2− x−3 is x+2 with the
residue 5x+5, as

x3+ x2−1
x2− x−3 = x+2+

5x+5
x2− x−3 .

We say that polynomial A is divisible by polynomial B if the remainder R when A is divided by
B equal to 0, i.e. if there is a polynomial Q such that A= BQ.

Theorem 3 (Bezout’s theorem). Polynomial P(x) is divisible by binomial x−a if and only if P(a) =
0.

Proof. There exist a polynomialQ and a constant c such that P(x) = (x−a)Q(x)+c. Here P(a) = c,
making the statement obvious. �
Number a is a zero (root) of a given polynomial P(x) if P(a) = 0, i.e. (x−a) | P(x).
To determine a zero of a polynomial f means to solve the equation f (x) = 0. This is not always

possible. For example, it is known that finding the exact values of zeros is impossible in general
when f is of degree at least 5. Nevertheless, the zeros can always be computed with an arbitrary
precision. Specifically, f (a) < 0< f (b) implies that f has a zero between a and b.

Example 3. Polynomial x2−2x−1 has two real roots: x1,2 = 1±
√
2.

Polynomial x2−2x+2 has no real roots, but it has two complex roots: x1,2 = 1± i.
Polynomial x5−5x+1 has a zero in the interval [1.44,1.441]which cannot be exactly computed.

More generally, the following simple statement holds.

Theorem 4. If a polynomial P is divisible by a polynomial Q, then every zero of Q is also a zero of
P. �

The converse does not hold. Although every zero of x2 is a zero of x, x2 does not divide x.

Problem 1. For which n is the polynomial xn+ x−1 divisible by a) x2− x+1, b) x3− x+1?
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Solution. a) The zeros of polynomial x2− x+ 1 are ε1,2 = 1±i
√
3

2 . If x2− x+ 1 divides xn+ x− 1,
then ε1,2 are zeros of polynomial xn+ x−1, so εni = 1− εi = ε−1i . Since εk = 1 if and only if 6 | k,
the answer is n= 6i−1.
b) If f (x) = x3− x+1 divides xn+ x−1, then it also divides xn+ x3. This means that every zero

of f (x) satisfies xn−3 = −1; in particular, each zero of f has modulus 1. However, f (x) has a zero
between −2 and −1 (for f (−2) < 0< f (−1)) which is obviously not of modulus 1. Hence there is
no such n. �
Every nonconstant polynomial with complex coefficients has a complex root. We shall prove

this statement later; until then we just believe.
The following statement is analogous to the unique factorization theorem in arithmetics.

Theorem 5. Polynomial P(x) of degree n> 0 has a unique representation of the form

P(x) = c(x− x1)(x− x2) · · · (x− xn),

not counting the ordering, where c �= 0 and x1, . . . ,xn are complex numbers, not necessarily distinct.
Therefore, P(x) has at most degP= n different zeros.

Proof. First we show the uniqueness. Suppose that

P(x) = c(x− x1)(x− x2) · · · (x− xn) = d(x− y1)(x− y2) · · · (x− yn).

Comparing the leading coefficients yields c = d. We may assume w.l.o.g. that there are no i, j for
which xi = y j (otherwise the factor x− xi can be canceled on both sides). Then P(x1) = 0. On the
other hand, P(x1) = d(x1− y1) · · · (x1− yn) �= 0, a contradiction.
The existence is shown by induction on n. The case n = 1 is clear. Let n > 1. The polynomial

P(x) has a complex root, say x1. By Bezout’s theorem, P(x) = (x− x1)P1(x) for some polynomial
P1 of degree n− 1. By the inductive assumption there exist complex numbers x2, . . . ,xn for which
P1(x) = c(x− x2) · · · (x− xn), which also implies P(x) = c(x− x1) · · · (x− xn). �
Corollary. If polynomials P and Q has degrees not exceeding n and coincide at n+ 1 different
points, then they are equal.
Grouping equal factors yields the canonical representation:

P(x) = c(x−a1)α1(x−a2)α2 · · ·(x−ak)αk ,

where αi are natural numbers with α1+ · · ·+ αk = n. The exponent αi is called the multiplicity of
the root ai. It is worth emphasizing that:

Theorem 6. Polynomial of n-th degree has exactly n complex roots counted with their multiplicities.
�

We say that two polynomialsQ and R are coprime if they have no roots in common; Equivalently,
there is no nonconstant polynomial dividing them both, in analogywith coprimeness of integers. The
following statement is a direct consequence of the previous theorem:

Theorem 7. If a polynomial P is divisible by two coprime polynomials Q and R, then it is divisible
by Q ·R. �

Remark: This can be shown without using the existence of roots. By the Euclidean algorithm applied
on polynomials there exist polynomials K and L such that KQ+LR = 1. Now if P = QS = RT for
some polynomials R,S, then R(KT −LS) = KQS−LRS= S, and therefore R | S and QR |QS = P.
If polynomialP(x) = xn+ · · ·+a1x+a0 with real coefficients has a complex zero ξ , then P(ξ ) =

ξ n+ · · ·+a1ξ +a0 = P(ξ ) = 0. Thus:

Theorem 8. If ξ is a zero of a real polynomial P(x), then so is ξ . �
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In the factorization of a real polynomial P(x) into linear factors we can group conjugated com-
plex zeros:

P(x) = (x− r1) · · · (x− rk)(x− ξ1)(x− ξ1) · · · (x− ξl)(x− ξl),

where ri are the real zeros, ξ complex, and k+ 2l = n = degP. Polynomial (x− ξ )(x− ξ) = x2−
2Reξ + |ξ |2 = x2− pix+qi has real coefficients which satisfy p2i −4qi < 0. This shows that:
Theorem 9. A real polynomial P(x) has a unique factorization (up to the order) of the form

P(x) = (x− r1) · · · (x− rk)(x2− p1x+q1) · · · (x2− plx+ql),

where ri and p j,q j are real numbers with p2i < 4qi and k+2l = n. �

It follows that a real polynomial of an odd degree always has an odd number of zeros (and at
least one).

2 Zeros of Polynomials
In the first section we described some basic properties of polynomials. In this section we describe
some further properties and at the end we prove that every complex polynomial actually has a root.
As we pointed out, in some cases the zeros of a given polynomial can be exactly determined.

The case of polynomials of degree 2 has been known since the old age. The well-known formula
gives the solutions of a quadratic equation ax2+bx+ c= 0 (a �= 0) in the form

x1,2 =
−b±

√
b2−4ac
2a

.

When f has degree 3 or 4, the (fairly impractical) formulas describing the solutions were given
by the Italian mathematicians Tartaglia and Ferrari in the 16-th century. We show Tartaglia’s method
of solving a cubic equation.
At first, substituting x = y− a/3 reduces the cubic equation x3 + ax2 + bx+ c = 0 with real

coefficients to

y3+ py+q= 0, where p= b− a
2

3
, q= c− ab

3
+
2a3

27
.

Putting y = u+ v transforms this equation into u3+ v3+ (3uv+ p)y+ q = 0. But, since u and v
are variable, we are allowed to bind them by the condition 3uv+ p = 0. Thus the above equation
becomes the system

uv= − p
3
, u3+ v3 = −q

which is easily solved: u3 and v3 are the solutions of the quadratic equation t2+ qt− p3
27 = 0 and

uv= −p/3 must be real. Thus we come to the solutions:
Theorem 10 (Cardano’s formula). The solutions of the equation y3+ py+q= 0 with p,q ∈ R are

yi = ε j
3

√

−q
2

+

√

q2
4

+
p3
27

+ ε− j
3

√

−q
2
−

√

q2
4

+
p3
27

, j = 0,1,2,

where ε is a primitive cubic root of unity. �

A polynomial f (x) = anxn+ · · ·+a1x+a0 is symmetric if an−i = ai for all i. If deg f = n is odd,
then −1 is a zero of f and the polynomial f (x)/(x+1) is symmetric. If n= 2k is even, then

f (x)/xk = a0(xk+ x−k)+ · · ·+ak−1(x+ x−1)+ak

is a polynomial in y = x+ x−1, for so is each of the expressions xi+ x−i (see problem 3 in section
7). In particular, x2+x−2 = y2−2, x3+x−3 = y3−3y, etc. This reduces the equation f (x) = 0 to an
equation of degree n/2.
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Problem 2. Show that the polynomial f (x) = x6−2x5+x4−2x3+x2−2x+1 has exactly four zeros
of modulus 1.

Solution. Set y= x+ x−1. Then

f (x)
x3

= g(y) = y3−2y2−2y+2.

Observe that x is of modulus 1 if and only if x = cost+ isin t for some t, in which case y = 2cost;
conversely, y = 2cost implies that x = cost± isin t. In other words, |x| = 1 if and only if y is real
with −2≤ y≤ 2, where to each such y correspond two values of x if y �=±2. Therefore it remains to
show that g(y) has exactly two real roots in the interval (−2,2). To see this, it is enough to note that
g(−2) = −10, g(0) = 2, g(2) = −2, and that therefore g has a zero in each of the intervals (−2,0),
(0,2) and (2,∞). �
How are the roots of a polynomial related to its coefficients? Consider a monic polynomial

P(x) = xn+a1xn−1+ · · ·+an−1x+an = (x− x1)(x− x2) · · · (x− xn)

of degree n > 0. For example, comparing coefficients at xn−1 on both sides gives us x1+ x2+ · · ·+
xn = −a1. Similarly, comparing the constant terms gives us x1x2 · · ·xn = (−1)nan. The general
relations are given by the Vieta formulas below.

Definition 1. Elementary symmetric polynomials in x1, . . . ,xn are the polynomials σ1,σ2, . . . ,σn,
where

σk = σk(x1,x2, . . . ,xn) = ∑xi1xi2 . . .xik ,

the sum being over all k-element subsets {i1, . . . , ik} of {1,2, . . . ,n}.

In particular, σ1 = x1+x2+ · · ·+xn and σn = x1x2 · · ·xn. Also, we usually set σ0 = 1 and σk = 0
for k> n.

Theorem 11 (Vieta’s formulas). If α1,α2, . . . ,αn are the zeros of polynomial P(x) = xn+a1xn−1+
a2xn−2+ · · ·+an, then ak = (−1)kσk(α1, . . . ,αn) for k = 1,2, . . . ,n.

Proof. Induction on n. The case n= 1 is trivial. Assume that n > 1 and write P(x) = (x− xn)Q(x),
whereQ(x) = (x−x1) · · · (x−xn−1). Let us compute the coefficient ak of P(x) at xk. Since the coeffi-
cients of Q(x) at xk−1 and xk are a′k−1 = (−1)k−1σk−1(x1, . . . ,xn−1) and a′k = (−1)kσk(x1, . . . ,xn−1)
respectively, we have

ak = −xna′k−1+a′k = σk(x1, . . . ,xn). �

Example 4. The roots x1,x2,x3 of polynomial P(x) = x3− ax2+ bx− c satisfy a = x1 + x2+ x3,
b= x1x2+ x2x3+ x3x1 and c= x1x2x3.

Problem 3. Prove that not all zeros of a polynomial of the form xn+2nxn−1+2n2xn−2+ · · · can be
real.

Solution. Suppose that all its zeros x1,x2, . . . ,xn are real. They satisfy

∑
i
xi = −2n, ∑

i< j
xix j = 2n2.

However, by the mean inequality we have

∑
i< j
xix j =

1
2

(

∑
i
xi

)2

− 1
2∑
i
x2i ≤

n−1
2n

(

∑
i
xi

)2

= 2n(n−1),

a contradiction.�
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Problem 4. Find all polynomials of the form anxn+ an−1xn−1+ · · ·+ a1x+ a0 with a j ∈ {−1,1}
( j = 0,1, . . . ,n), whose all roots are real.

Solution. Let x1, . . . ,xn be the roots of the given polynomial. Then

x21+ x22+ · · ·+ x2n = (∑i xi)2−2(∑i< j xix j) = a2n−1−2an−2≤ 3;
x21x22 · · ·x2n = 1.

By the mean inequality, the second equality implies x21+ · · ·+ x2n ≥ n; hence n ≤ 3. The case n = 3
is only possible if x1,x2,x3 = ±1. Now we can easily find all solutions: x± 1, x2± x− 1, x3− x±
(x2−1). �
One contradiction is enough to show that not all zeros of a given polynomial are real. On the

other hand, if the task is to show that all zeros of a polynomial are real, but not all are computable,
the situation often gets more complicated.

Problem 5. Show that all zeros of a polynomial f (x) = x(x−2)(x−4)(x−6)+ (x−1)(x−3)(x−
5)(x−7) are real.

Solution. Since f (−∞) = f (∞) = +∞, f (1) < 0, f (3) > 0 and f (5) < 0, polynomial f has a real
zero in each of the intervals (−∞,1), (1,3), (3,5), (5,∞), that is four in total. �
We now give the announced proof of the fact that every polynomial has a complex root. This

fundamental theorem has many different proofs. The proof we present is, although more difficult
than all the previous ones, still next to elementary. All imperfections in the proof are made on
purpose.

Theorem 12 (The Fundamental Theorem of Algebra). Every nonconstant complex polynomial
P(x) has a complex zero.

Proof. Write P(x) = xn+ an−1xn−1+ · · ·+ a0. Suppose that P(0) = a0 �= 0. For each r > 0, let Cr
be the circle in the complex plane with the center at point 0 and radius r. Consider the continuous
curve γr = P(Cr) = {P(x) | |x| = r}. The curve described by the monomial xn, i.e. {xn | x ∈ Cr}
rounds point 0 n times. If r is large enough, for example r > 1+ |a0|+ · · ·+ |an−1|, we have |xn| >
|an−1xn−1+ · · ·+a0|= |P(x)−xn|, which means that the rest P(x)−xn in the expression of P(x) can
not “reach” point 0. Thus for such r the curve γr also rounds point 0 n times; hence, it contains point
0 in its interior.
For very small r the curve γr is close to point P(0) = a0 and leaves point 0 in its exterior. Thus,

there exists a minimum r= r0 for which point 0 is not in the exterior of γr. Since the curve γr changes
continuously as a function of r, it cannot jump over the point 0, so point 0 must lie on the curve γr0 .
Therefore, there is a zero of polynomial P(x) of modulus r0. �

3 Polynomials with Integer Coefficients
Consider a polynomial P(x) = anxn+ · · ·+a1x+a0 with integer coefficients. The difference P(x)−
P(y) can be written in the form

an(xn− yn)+ · · ·+a2(x2− y2)+a1(x− y),

in which all summands are multiples of polynomial x− y. This leads to the simple though important
arithmetic property of polynomials from Z[x]:

Theorem 13. If P is a polynomial with integer coefficients, then P(a)−P(b) is divisible by a−b for
any distinct integers a and b.
In particular, all integer roots of P divide P(0). �

There is a similar statement about rational roots of polynomial P(x) ∈ Z[x].
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Theorem 14. If a rational number p/q (p,q ∈ Z, q �= 0, nzd(p,q) = 1) is a root of polynomial
P(x) = anxn+ · · ·+a0 with integer coefficients, then p | a0 and q | an.
Proof.We have

qnP
(

p
q

)

= anpn+an−1pn−1q+ · · ·+a0qn.

All summands but possibly the first are multiples of q, and all but possibly the last are multiples of
p. Hence q | anpn and p | a0qn and the claim follows. �
Problem 6. Polynomial P(x) ∈ Z[x] takes values ±1 at three different integer points. Prove that it
has no integer zeros.

Solution. Suppose to the contrary, that a,b,c,d are integers with P(a), P(b),P(c) ∈ {−1,1} and
P(d) = 0. Then by the previous statement the integers a−d,b−d and c−d all divide 1, a contra-
diction. �
Problem 7. Let P(x) be a polynomial with integer coefficients. Prove that if P(P(· · ·P(x) · · · )) = x
for some integer x (where P is iterated n times), then P(P(x)) = x.

Solution. Consider the sequence given by x0 = x and xk+1 = P(xk) for k ≥ 0. Assume xk = x0. We
know that

di = xi+1− xi | P(xi+1)−P(xi) = xi+2− xi+1 = di+1
for all i, which together with dk = d0 implies |d0| = |d1| = · · · = |dk|.
Suppose that d1 = d0 = d �= 0. Then d2 = d (otherwise x3 = x1 and x0 will never occur in the

sequence again). Similarly, d3 = d etc, and hence xk = x0+ kd �= x0 for all k, a contradiction. It
follows that d1 = −d0, so x2 = x0. �
Note that a polynomial that takes integer values at all integer points does not necessarily have

integer coefficients, as seen on the polynomial x(x−1)2 .

Theorem 15. If the value of the polynomial P(x) is integral for every integer x, then there exist
integers c0, . . . ,cn such that

P(x) = cn
(

x
n

)

+ cn−1
(

x
n−1

)

+ · · ·+ c0
(

x
0

)

.

The converse is true, also.

Proof. We use induction on n. The case n = 1 is trivial; Now assume that n > 1. Polynomial
Q(x) = P(x+ 1)−P(x) is of degree n− 1 and takes integer values at all integer points, so by the
inductive hypothesis there exist a0, . . . ,an−1 ∈ Z such that

Q(x) = an−1
(

x
n−1

)

+ · · ·+a0
(

x
0

)

.

For every integer x > 0 we have P(x) = P(0)+Q(0)+Q(1)+ · · ·+Q(x− 1). Using the identity
(0
k
)

+
(1
k
)

+ · · ·+
(x−1
k

)

=
( x
k+1

)

for every integer k we obtain the desired representation of P(x):

P(x) = an−1
(

x
n

)

+ · · ·+a0
(

x
1

)

+P(0). �

Problem 8. Suppose that a natural number m and a real polynomial R(x) = anxn+an−1xn−1+ · · ·+
a0 are such that R(x) is an integer divisible by m whenever x is an integer. Prove that n!an is divisible
by m.

Solution. Apply the previous theorem on polynomial 1mR(x) (with the same notation). The leading
coefficient of this polynomial equals cn+ncn−1+ · · ·+n!c0, and the statement follows immediately.
�
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4 Irreducibility
Polynomial P(x) with integer coefficients is said to be irreducible over Z[x] if it cannot be written as
a product of two nonconstant polynomials with integer coefficients.

Example 5. Every quadratic or cubic polynomial with no rational roots is irreducible over Z. Such
are e.g. x2− x−1 and 2x3−4x+1.

One analogously defines (ir)reducibility over the sets of polynomials with e.g. rational, real or
complex coefficients. However, of the mentioned, only reducibility over Z[x] is of interest. Gauss’
Lemma below claims that the reducibility over Q[x] is equivalent to the reducibility over Z[x]. In
addition, we have already shown that a real polynomial is always reducible into linear and quadratic
factors over R[x], while a complex polynomial is always reducible into linear factors over C[x].

Theorem 16 (Gauss’ Lema). If a polynomial P(x) with integer coefficients is reducible over Q[x],
then it is reducible over Z[x], also.

Proof. Suppose that P(x) = anxn+ · · ·+ a0 = Q(x)R(x) ∈ Z[x], where Q(x) and R(x) nonconstant
polynomials with rational coefficients. Let q and r be the smallest natural numbers such that the
polynomials qQ(x) = qkxk + · · ·+ q0 and rR(x) = rmxm+ · · ·+ r0 have integer coefficients. Then
qrP(x) = qQ(x) · rR(x) is a factorization of the polynomial qrP(x) into two polynomials from Z[x].
Based on this, we shall construct such a factorization for P(x).
Let p be an arbitrary prime divisor of q. All coefficients of P(x) are divisible by p. Let i be such

that p | q0,q1, . . . ,qi−1, but p � qi. We have p | ai = q0ri+ · · ·+ qir0 ≡ qir0 (mod p), which implies
that p | r0. Furthermore, p | ai+1 = q0ri+1+ · · ·+qir1+qi+1r0 ≡ qir1 (mod p), so p | r1. Continuing
in this way, we deduce that p | r j for all j. Hence rR(x)/p has integer coefficients. We have thus
obtained a factorization of rqp P(x) into two polynomials from Z[x]. Continuing this procedure and
taking other values for p we shall eventually end up with a factorization of P(x) itself. �

From now on, unless otherwise specified, by “irreducibility” we mean irreducibility over Z[x].

Problem 9. If a1, a2, . . . , an are integers, prove that the polynomial P(x) = (x−a1)(x−a2) · · · (x−
an)−1 is irreducible.

Solution. Suppose that P(x) = Q(x)R(x) for some nonconstant polynomials Q,R ∈ Z[x]. Since
Q(ai)R(ai) = −1 for i = 1, . . . ,n, we have Q(ai) = 1 and R(ai) = −1 or Q(ai) = −1 and R(ai) =
1; either way, we have Q(ai) + R(ai) = 0. It follows that the polynomial Q(x) +R(x) (which is
obviously nonzero) has n zeros a1, . . . ,an which is impossible for its degree is less than n. �

Theorem 17 (Extended Eisenstein’s Criterion). Let P(x) = anxn+ · · ·+a1x+a0 be a polynomial
with integer coefficients. If there exist a prime number p and an integer k ∈ {0,1, . . . ,n− 1} such
that

p | a0,a1, . . . ,ak, p � ak+1 and p2 � a0,

then P(x) has an irreducible factor of a degree greater than k.
In particular, if p can be taken so that k = n−1, then P(x) is irreducible.

Proof. Like in the proof of Gauss’s lemma, suppose that P(x) = Q(x)R(x), where Q(x) = qkxk+
· · ·+ q0 and R(x) = rmxm+ · · ·+ r0 are polynomials from Z[x]. Since a0 = q0r0 is divisible by p
and not by p2, exactly one of q0,r0 is a multiple of p. Assume that p | q0 and p � r0. Further,
p | a1 = q0r1+q1r0, implying that p | q1r0, i.e. p | q1, and so on. We conclude that all coefficients
q0,q1, . . . ,qk are divisible by p, but p � qk+1. It follows that degQ≥ k+1. �

Problem 10. Given an integer n > 1, consider the polynomial f (x) = xn+ 5xn−1+ 3. Prove that
there are no nonconstant polynomials g(x),h(x) with integer coefficients such that f (x) = g(x)h(x).
(IMO93-1)
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Solution. By the (extended) Eisenstein criterion, f has an irreducible factor of degree at least n−1.
Since f has no integer zeros, it must be irreducible. �

Problem 11. If p is a prime number, prove that the polynomial Φp(x) = xp−1+ · · ·+ x+ 1 is irre-
ducible.

Solution. Instead of Φp(x), we shall consider Φp(x+1) and show that it is irreducible, which will
clearly imply that so is Φp. We have

Φp(x+1) =
(x+1)p−1

x
= xp−1+

(

p
p−1

)

xp−2+ · · ·+
(

p
2

)

x+ p.

This polynomial satisfies all the assumptions of Eisenstein’s criterion, based on which it is irre-
ducible. �
In investigating reducibility of a polynomial, it can be useful to investigate its zeros and their

modules. The following problems provide us an illustration.

Problem 12. Prove that the polynomial P(x) = xn+ 4 is irreducible over Z[x] if and only if n is a
multiple of 4.

Solution. All zeros of polynomial P have the modulus equal to 22/n. If Q and R are polynomials
from Z[x] and degQ = k, then |Q(0)| is the product of the modules of the zeros of Q and equals
22k/n; since this should be an integer, we deduce that n= 2k.
If k is odd, polynomial Q has a real zero, which is impossible since P(x) has none. Therefore,

2 | k and 4 | n. �
If the zeros cannot be exactly determined, one should find a good enough bound. Estimating

complex zeros of a polynomial is not always simple. Our main tool is the triangle inequality for
complex numbers:

|x|− |y| ≤ |x+ y| ≤ |x|+ |y|.
Consider a polynomialP(x) = anxn+an−kxn− k+ · · ·+a1x+a0 with complex coefficients (an �=

0). Let α be its zero. IfM is a real number such that |ai| <M|an| for all i, it holds that

0= |P(α)| ≥ |an||α|n−M|an|(|α|n−k+ · · ·+ |α|+1) > |an||α|n
(

1− M
|α|k−1(|α|−1)

)

,

which yields |α|k−1(|α|−1) <M. We thus come to the following estimate:

Theorem 18. Let P(x) = anxn+ · · ·+a0 be a complex polynomial with an �= 0 and M = max
0≤k<n

∣

∣

∣

∣

ak
an

∣

∣

∣

∣

.

If an−1 = · · · = an−k+1 = 0, then all roots of the polynomial P are less than 1+ k√M in modulus.
In particular, for k = 1, each zero of P(x) is of modulus less than M+1. �

Problem 13. If an . . .a1a0 is a decimal representation of a prime number and an > 1, prove that the
polynomial P(x) = anxn+ · · ·+a1x+a0 is irreducible. (BMO 1989.2)

Solution. Suppose that Q and R are nonconstant polynomials from Z[x] with Q(x)R(x) = P(x). Let
x1, . . . ,xk be the zeros of Q and xk+1, . . . ,xn be the zeros of R. The condition of the problem means
that P(10) = Q(10)R(10) is a prime, so we can assume w.l.o.g. that

|Q(10)|= (10− x1)(10− x2) · · · (10− xk) = 1.

On the other hand, by the estimate in 18, each zero xi has a modulus less than 1+9/2= 11/2< 9;
hence |10− xi| > 1 for all i, contradicting the above inequality. �

Problem 14. Let p> 2 be a prime number and P(x) = xp− x+ p.
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1. Prove that all zeros of polynomial P are less than p
1
p−1 in modulus.

2. Prove that the polynomial P(x) is irreducible.

Solution.

1. Let y be a zero of P. Then |y|p−|y| ≤ |yp− y|= p. If we assume that |y| ≥ p
1
p−1 , we obtain

|y|p−|y| ≥ (p−1)p
1
p−1 > p,

a contradiction. Here we used the inequality p
1
p−1 > p

p−1 which follows for example from the
binomial expansion of pp−1 = ((p−1)+1)p−1.

2. Suppose that P(x) is the product of two nonconstant polynomials Q(x) and R(x) with integer
coefficients. One of these two polynomials, say Q, has the constant term equal to ±p. On the
other hand, the zeros x1, . . . ,xk of Q satisfy |x1|, . . . , |xk|< p

1
p−1 by part (a), and x1 · · ·xk =±p,

so we conclude that k≥ p, which is impossible. �

5 Interpolating polynomials
A polynomial of n-th degree is uniquely determined, given its values at n+ 1 points. So, suppose
that P is an n-th degree polynomial and that P(xi) = yi in different points x0,x1, . . . ,xn. There exist
unique polynomials E0,E1, . . . ,En of n-th degree such that Ei(xi) = 1 and Ei(x j) = 0 for j �= i. Then
the polynomial

P(x) = y0E0(x)+ y1E1(x)+ · · ·+ ynEn(x)

has the desired properties: indeed, P(xi) = ∑ j y jE j(xi) = yiEi(xi) = yi. It remains to find the poly-
nomials E0, . . . ,En. A polynomial that vanishes at the n points x j, j �= i, is divisible by∏ j �=i(x− x j),
from which we easily obtain Ei(x) = ∏ j �=i

(x−x j)
(xi−x j) . This shows that:

Theorem 19 (Newton’s interpolating polynomial). For given numbers y0, . . . ,yn and distinct x0,
. . . , xn there is a unique polynomial P(x) of n-th degree such that P(xi) = yi for i= 0, 1, . . . ,n. This
polynomial is given by the formula

P(x) =
n

∑
i=0
yi∏
j �=i

(x− x j)
(xi− x j)

. �

Example 6. Find the cubic polynomial Q such that Q(i) = 2i for i= 0,1,2,3.

Solution. Q(x) = (x−1)(x−2)(x−3)
−6 + 2x(x−2)(x−3)

2 + 4x(x−1)(x−3)
−2 + 8x(x−1)(x−2)

6 = x3+5x+6
6 . �

In order to compute the value of a polynomial given in this way in some point, sometimes we
do not need to determine its Newton’s polynomial. In fact, Newton’s polynomial has an unpleasant
property of giving the answer in a complicated form.

Example 7. If the polynomial P of n-th degree takes the value 1 in points 0,2,4, . . . ,2n, compute
P(−1).

Solution. P(x) is of course identically equal to 1, so P(−1) = 1. But if we apply the Newton
polynomial, here is what we get:

P(1) =
n

∑
i=0

∏
j �=i

1−2i
(2 j−2i) =

n

∑
i=0

∏
j �=i

−1−2 j
(2i−2 j) =

(2n+1)!!
2n

n+1

∑
i=1

(−1)n−i
(2i+1)i!(n− i)!. �
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Dušan Djukić: Polynomials in One Variable 11

Instead, it is often useful to consider the finite difference of polynomial P, defined by P[1](x) =
P(x+ 1)−P(x), which has the degree by 1 less than that of P. Further, we define the k-th finite
difference, P[k] = (P[k−1])[1], which is of degree n− k (where degP= n). A simple induction gives a
general formula

P[k] =
k

∑
i=0

(−1)k−i
(

k
i

)

P(x+ i).

In particular, P[n] is constant and P[n+1] = 0, which leads to

Theorem 20. P(x+n+1)=
n

∑
i=0

(−1)n−i
(

n+1
i

)

P(x+ i). �

Problem 15. Polynomial P of degree n satisfies P(i) =
(n+1
i

)−1 for i= 0,1, . . . ,n. Evaluate P(n+1).

Solution. We have

0=
n+1

∑
i=0

(−1)i
(

n+1
i

)

P(i) = (−1)n+1P(n+1)+

{

1, 2 | n;
0, 2 � n.

It follows that P(n+1) =

{

1, 2 | n;
0, 2 � n. �

Problem 16. If P(x) is a polynomial of an even degree n with P(0) = 1 and P(i) = 2i−1 for i =
1, . . . ,n, prove that P(n+2) = 2P(n+1)−1.

Solution. We observe that P[1](0) = 0 i P[1](i) = 2i−1 for i= 1, . . . ,n−1; furthermore, P[2](0) = 1 i
P[2](i)= 2i−1 for i= 1, . . . ,n−2, etc. In general, it is easily seen that P[k](i) = 2i−1 for i= 1, . . . ,n−k,
and P[k](0) is 0 for k odd and 1 for k even. Now

P(n+1) = P(n)+P[1](n) = · · · = P(n)+P[1](n−1)+ · · ·+P[n](0) =

{

2n, 2 | n;
2n−1, 2 � n.

Similarly, P(n+2) = 22n+1−1. �

6 Applications of Calculus
The derivative of a polynomial P(x) = anxn+an−1xn−1+ · · ·+a1x+a0 is given by

P′(x) = nanxn−1+(n−1)an−1xn−2+ · · ·+a1.

The inverse operation, the indefinite integral, is given by
∫

P(x)dx=
an
n+1

xn+1+
an−1
n
xn+ · · ·+a0x+C.

If the polynomial P is not given by its coefficients but rather by its canonical factorization, as
P(x) = (x− x1)k1 · · · (x− xn)kn , a more suitable expression for the derivative is obtained by using
the logarithmic derivative rule or product rule:

P′(x) = P(x)
(

k1
x− x1

+ · · ·+ kn
x− xn

)

.

A similar formula can be obtained for the second derivative.
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Problem 17. Suppose that real numbers 0= x0 < x1 < · · · < xn < xn+1 = 1 satisfy

n+1

∑
j=0, j �=i

1
xi− x j

= 0 za i= 1,2, . . . ,n. (1)

Prove that xn+1−i = 1− xi for i= 1,2, . . . ,n.

Solution. Let P(x) = (x− x0)(x− x1) · · · (x− xn)(x− xn+1). We have

P′(x) =
n+1

∑
j=0

P(x)
x− x j

i P′′(x) =
n+1

∑
j=0

∑
k �= j

P(x)
(x− x j)(x− xk)

.

Therefore
P′′(xi) = 2P′(xi)∑

j �=i

1
(xi− x j)

for i= 0,1, . . . ,n+1. Thus the condition of the problem is equivalent to P′′(xi) = 0 for i= 1,2, . . . ,n.
Therefore

x(x−1)P′′(x) = (n+2)(n+1)P(x).

It is easy to see that there is a unique monic polynomial of degree n+2 satisfying the above differ-
ential equation. On the other hand, the monic polynomial Q(x) = (−1)nP(1− x) satisfies the same
equation and has degree n+2, so we must have (−1)nP(1−x) = P(x), which implies the statement.
�
What makes derivatives of polynomials especially suitable is their property of preserving multi-

ple zeros.

Theorem 21. If (x−α)k | P(x), then (x−α)k−1 | P′(x).

Proof. If P(x) = (x−α)kQ(x), then P′(x) = (x−α)kQ′(x)+ k(x−α)k−1Q(x). �

Problem 18. Determine a real polynomial P(x) of degree at most 5 which leaves remainders −1
and 1 upon division by (x−1)3 and (x+1)3, respectively.

Solution. If P(x)+ 1 has a triple zero at point 1, then its derivative P′(x) has a double zero at that
point. Similarly, P′(x) has a double zero at point −1 too. It follows that P′(x) is divisible by the
polynomial (x−1)2(x+1)2. Since P′(x) is of degree at most 4, it follows that

P′(x) = c(x−1)2(x+1)2 = c(x4−2x2+1)

for some constant c. Now P(x) = c( 15x
5− 2

3x
3+x)+d for some real numbers c and d. The conditions

P(−1) = 1 and P(1) = −1 now give us c= −15/8, d = 0 and

P(x) = −3
8
x5+

5
4
x3− 15

8
x. �

Problem 19. For polynomials P(x) and Q(x) and an arbitrary k ∈ C, denote

Pk = {z ∈ C | P(z) = k} and Qk = {z ∈ C | Q(z) = k}.

Prove that P0 = Q0 and P1 = Q1 imply that P(x) = Q(x).

Solution. Let us assume w.l.o.g. that n = degP ≥ degQ. Let P0 = {z1,z2, . . . ,zk} and P1 = {zk+1,
zk+2, . . . ,zk+m}. Polynomials P andQ coincide at k+m points z1,z2, . . . ,zk+m. The result will follow
if we show that k+m> n.
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We have

P(x) = (x− z1)α1 · · ·(x− zk)αk = (x− zk+1)αk+1 · · ·(x− zk+m)αk+m +1

for some natural numbers α1, . . . ,αk+m. Let us consider P′(x). We know that it is divisible by
(x− zi)αi−1 for i= 1,2, . . . ,k+m; hence,

k+m

∏
i=1

(x− zi)αi−1 | P′(x).

Therefore, 2n− k−m= deg∏k+m
i=1 (x− zi)αi−1 ≤ degP′ = n−1, i.e. k+m≥ n+1, as desired. �

Even if P has no multiple zeros, certain relations between zeros of P and P′ still hold. For
example, the following statement holds for all differentiable functions.

Theorem 22 (Rolle’s Theorem). Between every two zeros of a polynomial P(x) there is a zero of
P′(x).

Corollary. If all zeros of P(x) are real, then so are all zeros of P′(x).)
Proof. Let a< b be two zeros of polynomialP. Assume w.l.o.g. that P′(a)> 0 and consider the point
c in the interval [a,b] in which P attains a local maximum (such a point exists since the interval [a,b]
is compact). We know that P(x) = P(c)+ (x− c)[P′(c)+ o(1)]. If for example P′(c) > 0 (the case
P′(c) < 0 leads to a similar contradiction), then P(x) > P(c) would hold in a small neighborhood of
c, a contradiction. It is only possible that P′(c) = 0, so c is a root of P′(x) between a and b. �

7 Symmetric polynomials
A symmetric polynomial in variables x1, . . . ,xn is every polynomial that is not varied by permuting
the indices of the variables. For instance, polynomial x21 is symmetric as a polynomial in x1 (no
wonder), but is not symmetric as a polynomial in x1,x2 as changing places of the indices 1 and 2
changes it to the polynomial x22.

Definition 2. The polynomial P(x1,x2, . . . ,xn) is symmetric if, for every permutation π of {1, 2, . . . ,
n}, P(x1,x2, . . . ,xn) ≡ P(xπ(1),xπ(2), . . . ,xπ(n)).

An obvious property of a symmetric polynomial is that its coefficients at two terms of the forms
xi11 · · ·xinn and x

j1
1 · · ·x jnn , where ( j1, . . . , jn) is a permutation (i1, . . . , in), always coincide. For example,

if the expansion of a symmetric polynomial in x,y,z contains the terms x2y, then it also contains
x2z,xy2, etc, with the same coefficient.
Thus, the polynomials σk (1≤ k ≤ n) introduced in section 2 are symmetric. Also symmetric is

e.g. the polynomial x21+ x22.
A symmetric polynomial is said to be homogenous if all its terms are of the same degree. Equiv-

alently, polynomial T is homogenous of degree d if T (tx1, . . . ,txn) = tdT (x1, . . . ,xn) holds for all x
and t. For instance, x21+ x22 is homogenous of degree d = 2, but x21+ x22+1, although symmetric, is
not homogenous.
Every symmetric polynomial in x1, . . . ,xn can be written as a sum of homogenous polynomials.

Moreover, it can also be represented as a linear combination of certain “bricks”. These bricks are
the polynomials

Ta = ∑x
ai1
1 · · ·xainn (∗)

for each n-tuple a = (a1, . . . ,an) of nonnegative integers with a1 ≥ ·· · ≥ an, where the summation
goes over all permutations (i1, . . . , in) of the indices 1, . . . ,n. In the expression for Ta the same
summand can occur more than once, so we define Sa as the sum of the different terms in (∗). The
polynomial Ta is always an integral multiple of Sa. For instance,

T(2,2,0) = 2(x21x
2
2+ x

2
2x
2
3+ x23x

2
1) = 2S(2,2,0).
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All the n-tuples a of degree d = a1+ · · ·+an can be ordered in a lexicographic order so that

a> a′ if s1 = s′1, . . . ,sk = s′k and sk+1 > s′k+1 for some k≥ 1,

where si = a1+ · · ·+ ai. In this ordering, the least n-tuple is m = (x+ 1, . . . ,x+ 1,x, . . . ,x), where
x= [d/n] and x+1 occurs d−n[d/n] times.
The polynomials Ta can be multiplies according to the following simple formula:

Theorem 23. If a = (a1, . . . ,an) and b = (b1, . . . ,bn) are n-tuples of nonnegative integers, it holds
that

Ta ·Tb = ∑
π
Ta+π(b),

where the sum goes over all permutations π(b) of the n-tuple b. (We define (xi)ni=1 + (yi)ni=1 =
(xi+ yi)ni=1.)

Proof. It suffices to observe that

xπ1(b)
1 · · ·xπn(b)

n Ta = ∑x
a1+πi1(b)
i1 · · ·xan+πin(b)

in ,

and to sum up over all permutations π . �

There are infinitely many mentioned bricks, and these are obviously not mutually independent.
We need simpler elements which are independent and using which one can express every symmetric
polynomial by basic operations. It turns out that these atoms are σ1, . . . ,σn.

Example 8. The following polynomials in x,y,z can be written in terms of σ1,σ2,σ3:
xy+ yz+ zx+ x+ y+ z= σ2+ σ1;
x2y+ x2z+ y2x+ y2z+ z2x+ z2y= σ1σ2−3σ3;
x2y2+ y2z2+ z2x2 = σ22 −2σ1σ3.

Theorem 24. Every symmetric polynomial in x1, . . . ,xn can be represented in the form of a polyno-
mial in σ1, . . . ,σn. Moreover, a symmetric polynomial with integer coefficients is also a polynomial
in σ1, . . . ,σn with integer coefficients.

Proof. It is enough to prove the statement for the polynomials Sa of degree d (for each d). Assuming
that it holds for the degrees less than d, we use induction on n-tuples a. The statement is true for
the smallest n-tuple m: Indeed, Sm = σqnσr, where d = nq+ r, 0 ≤ r < n. Now suppose that the
statement is true for all Sb with b< a; we show that it also holds for Sa.
Suppose that a = (a1, . . . ,an) with a1 = · · · = ak > ak+1 (k ≥ 1). Consider the polynomial Sa−

σkSa′ , where a′ = (a1− 1, . . . ,ak− 1,ak+1, . . . ,an). According to theorem 23 it is easy to see that
this polynomial is of the form ∑b<a cbSb, where cb are integers, and is therefore by the inductive
hypothesis representable in the form of a polynomial in σi with integer coefficients. �

The proof of the previous theorem also gives us an algorithm for expressing each symmetric
polynomial in terms of the σi. Nevertheless, for some particular symmetric polynomials there are
simpler formulas.

Theorem 25 (Newton’s Theorem on Symmetric Polynomials). If we denote sk = xk1+x
k
2+ · · ·+xkn,

then:
kσk = s1σk−1− s2σk−2+ · · ·+(−1)ksk−1σ1+(−1)k+1sk;
sm = σ1sm−1−σ2sm−2+ · · ·+(−1)n−1σnsm−n za m≥ n.

(All the polynomials are in n variables.)

Proof. Direct, for example by using the formula 23. �
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Problem 20. Suppose that complex numbers x1,x2, . . . ,xk satisfy

x j1+ x j2+ · · ·+ x jk = n, for j = 1,2, . . . ,k,

where n,k are given positive integers. Prove that

(x− x1)(x− x2) . . . (x− xk) = xk−
(

n
1

)

xk−1+

(

n
2

)

xk−2−·· ·+(−1)k
(

n
k

)

.

Solution. We are given sk = n for k = 1, . . . ,n. The Newton’s theorem gives us σ1 = n, σ2 =
1
2 (nσ1−n) =

(n
2
)

, σ3 = 1
3(nσ2−nσ1+n) =

(n
3
)

, etc. We prove by induction on k that σk =
(n
k
)

. If
this holds for 1, . . . ,k−1, we have

σk =
n
k

[(

n
k−1

)

−
(

n
k−2

)

+

(

n
k−3

)

−·· ·
]

.

Since
(n
i
)

=
(n−1
i

)

+
(n−1
i−1

)

, the above equality telescopes to σk = n
k
(n−1
k−1

)

, which is exactly equal to
(n
k
)

. �

8 Problems
1. A monic polynomial f (x) of fourth degree satisfies f (1) = 10, f (2) = 20 and f (3) = 30.
Determine f (12)+ f (−8).

2. Consider complex polynomials P(x) = xn+ a1xn−1+ · · ·+ an with the zeros x1, . . . ,xn, and
Q(x) = xn+ b1xn−1+ · · ·+ bn with the zeros x21, . . . ,x2n. Prove that if a1+ a3+ a5+ · · · and
a2+a4+a6+ · · · are real numbers, then b1+b2+ · · ·+bn is also real.

3. If a polynomial P with real coefficients satisfies for all x

P(cosx) = P(sinx),

show that there exists a polynomial Q such that P(x) = Q(x4− x2) for each x.

4. (a) Prove that for each n ∈ N there is a polynomial Tn with integer coefficients and the
leading coefficient 2n−1 such that Tn(cosx) = cosnx for all x.

(b) Prove that the polynomials Tn satisfy Tm+n+Tm−n = 2TmTn for all m,n ∈ N, m≥ n.
(c) Prove that the polynomialUn given byUn(2x) = 2Tn(x) also has integer coefficients and

satisfiesUn(x+ x−1) = xn+ x−n.
The polynomials Tn(x) are known as the Chebyshev polynomials.

5. Prove that if cos pqπ = a is a rational number for some p,q ∈ Z, then a ∈ {0,± 1
2 ,±1}.

6. Prove that the maximum in absolute value of any monic real polynomial of n-th degree on
[−1,1] is not less than 1

2n−1 .

7. The polynomialP of n-th degree is such that, for each i= 0,1, . . . ,n, P(i) equals the remainder
of i modulo 2. Evaluate P(n+1).

8. A polynomial P(x) of n-th degree satisfies P(i) = 1
i for i= 1,2, . . . ,n+1. Find P(n+2).

9. Let P(x) be a real polynomial.

(a) If P(x) ≥ 0 for all x, show that there exist real polynomials A(x) and B(x) such that
P(x) = A(x)2+B(x)2.
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(b) If P(x) ≥ 0 for all x≥ 0, show that there exist real polynomials A(x) and B(x) such that
P(x) = A(x)2+ xB(x)2.

10. Prove that if the equation Q(x) = ax2+(c− b)x+(e− d) = 0 has real roots greater than 1,
where a,b,c,d,e ∈ R, then the equation P(x) = ax4+bx3+ cx2+dx+ e= 0 has at least one
real root.

11. A monic polynomial P with real coefficients satisfies |P(i)| < 1. Prove that there is a root
z= a+bi of P such that (a2+b2+1)2 < 4b2+1.

12. For what real values of a does there exist a rational function f (x) that satisfies f (x2) = f (x)2−
a? (A rational function is a quotient of two polynomials.)

13. Find all polynomials P satisfying P(x2+1) = P(x)2+1 for all x.

14. Find all P for which P(x)2−2= 2P(2x2−1).

15. If the polynomials P and Q each have a real root and

P(1+ x+Q(x)2) = Q(1+ x+P(x)2),

prove that P≡Q.

16. Find all polynomials P(x) with real coefficients satisfying the equality

P(a−b)+P(b− c)+P(c−a)= 2P(a+b+ c)

for all triples (a,b,c) of real numbers such that ab+bc+ ca= 0. (IMO04-2)

17. A sequence of integers (an)∞
n=1 has the property that m−n | am−an for any distinct m,n ∈ N.

Suppose that there is a polynomial P(x) such that |an| < P(n) for all n. Show that there exists
a polynomialQ(x) such that an = Q(n) for all n.

18. Let P(x) be a polynomial of degree n > 1 with integer coefficients and let k be a natural
number. Consider the polynomial Q(x) = P(P(. . .P(P(x)) . . . )), where P is applied k times.
Prove that there exist at most n integers t such that Q(t) = t. (IMO06-5)

19. If P and Q are monic polynomials such that P(P(x)) = Q(Q(x)), prove that P≡Q.

20. Let m,n and a be natural numbers and p < a−1 a prime number. Prove that the polynomial
f (x) = xm(x−a)n+ p is irreducible.

21. Prove that the polynomial F(x) = (x2+ x)2n +1 is irreducible for all n ∈ N.

22. A polynomial P(x) has the property that for every y ∈ Q there exists x ∈ Q such that P(x) = y.
Prove that P is a linear polynomial.

23. Let P(x) be a monic polynomial of degree n whose zeros are i− 1, i− 2, . . . , i− n (where
i2 = −1) and let R(x) and S(x) be the real polynomials such that P(x) = R(x)+ iS(x). Prove
that the polynomial R(x) has n real zeros.

24. Let a,b,c be natural numbers. Prove that if there exist coprime polynomials P,Q,R with
complex coefficients such that

Pa+Qb = Rc,
then 1a + 1

b + 1
c > 1.

Corollary: The Last Fermat Theorem for polynomials.

25. Suppose that all zeros of a monic polynomial P(x) with integer coefficients are of module 1.
Prove that there are only finitely many such polynomials of any given degree; hence show that
all its zeros are actually roots of unity, i.e. P(x) | (xn−1)k for some natural n,k.
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9 Solutions
1. The polynomial f (x)− 10x vanishes at points x = 1,2,3, so it is divisible by polynomial

(x−1)(x−2)(x−3). The monicity implies that f (x)−10x= (x−1)(x−2)(x−3)(x− c) for
some c. Now

f (12)+ f (−8) = 11 ·10 ·9 · (12− c)+120+(−9)(−10)(−11)(−8− c)−80= 19840.

2. Note that Q(x2) = ∏(x2− x2i ) = ∏(x− xi) ·∏(x+ xi) = (−1)nP(x)P(−x). We now have

b1+b2+ · · ·+bn = Q(1)−1= (−1)nP(1)P(−1)−1= (−1)n(1+B−A)(1+B+A),

where A= a1+a3+a5+ · · · and B= a2+a4+ · · · .

3. It follows from the conditions that P(−sinx) = P(sinx), i.e. P(−t) = P(t) for infinitely many
t, so the polynomials P(x) and P(−x) coincide. Therefore, P(x) = S(x2) for some polynomial
S. Now S(cos2 x) = S(sin2 x) for all x, i.e. S(1− t) = S(t) for infinitely many t, which implies
S(x) ≡ S(1− x). This is equivalent to R(x− 1

2 ) = R( 12 − x), i.e. R(y) ≡ R(−y), where R is
a polynomial such that S(x) = R(x− 1

2). Now R(x) = T (x2) for some polynomial T , and
therefore P(x) = S(x2) = R(x2− 1

2 ) = T (x4− x2+ 1
4) = Q(x4− x2) for some polynomialQ.

4. (a) Clearly, T0(x) = 1 and T1(x) = x satisfy the requirements. For n> 1 we use induction on
n. Since cos(n+1)x= 2cosxcosnx− cos(n−1)x, we can define Tn+1 = 2T1Tn−Tn−1.
Since T1Tn and Tn−1 are of degrees n+1 and n−1 respectively, Tn+1 is of degree n+1
and has the leading coefficient 2 · 2n = 2n+1. It also follows from the construction that
all its coefficients are integers.

(b) The relation follows from the identity cos(m+n)x+ cos(m−n)x= 2cosmxcosnx.
(c) The sequence of polynomials (Un) satisfies U0(x) = 2, U1(x) = x and Un+1 =U1Un−
Un−1, implying that eachUn has integer coefficients. The equalityUn(x+x−1)= xn+x−n
holds for each x= cost+ isin t, and therefore it holds for all x.

5. Suppose that cos pqπ = a. It follows from the previous problem thatUq(2a) = 2cos pπ = ±2,
whereUq is monic with integer coefficients, so 2a is an integer by theorem 14.

6. Note that equality holds for a multiple of the n-th Chebyshev polynomial Tn(x). The leading
coefficient of Tn equals 2n−1, soCn(x) = 1

2n−1Tn(x) is a monic polynomial and

|Tn(x)| =
1
2n−1

|cos(narccosx)| ≤ 1
2n−1

za x ∈ [−1,1].

Moreover, the values of Tn at points 1,cos π
n ,cos

2π
n , · · · ,cos (n−1)π

n ,−1 are alternately 1
2n−1

and − 1
2n−1 .

Now suppose that P �= Tn is a monic polynomial such that max−1≤x≤1 |P(x)| < 1
2n−1 . Then

P(x)−Cn(x) at points 1,cos π
n , · · · ,cos

(n−1)π
n ,−1 alternately takes positive and negative val-

ues. Therefore the polynomialP−Cn has at least n zeros, namely, at least one in every interval
between two adjacent points. However,P−Cn is a polynomial of degree n−1 as the monomial
xn is canceled, so we have arrived at a contradiction.

7. Since P[i](x) = (−2)i−1(−1)x for x= 0,1, . . . ,n− i, we have

P(n+1) = P(n)+P[1](n−1)+ · · ·+P[n](0) =

{

2n, 2 � n;
1−2n, 2 | n.
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8. By theorem 20 we have

P(n+2) =
n

∑
i=0

(−1)n−i 1
i+1

(

n+1
i

)

=
1

n+2

n

∑
i=0

(−1)n−i
(

n+2
i+1

)

=

{

0, 2 � n;
2
n+2 , 2 | n.

9. By theorem 9, the polynomial P(x) can be factorized as

P(x) = (x−a1)α1 · · · (x−ak)αk · (x2−b1x+ c1) · · · (x2−bmx+ cm), (∗)

where ai,b j,c j are real numbers such that the ai are different and the polynomials x2−bix+ci
has no real zeros.
The condition P(x) ≥ 0 for all x implies that the αi are even, whereas the condition P(x) ≥ 0
for x ≥ 0 implies that (∀i) αi is even or ai < 0. It is now easy to write each factor in (∗) in
the form A2+B2, respectively A2+ xB2, so by the known formula (a2+ γb2)(c2 + γd2) =
(ac+ γbd)2+ γ(ad−bc)2 one can express their product P(x) in the desired form.

10. Write
P(−x) = ax4+(c−b)x2+(e−d)−b(x3− x2)−d(x−1).

If r is a root of the polynomial Q, we have P(
√
r) = −(

√
r− 1)(br+ d) and P(−√

r) =
(
√
r+1)(br+d). Note that one of the two numbersP(±√

r) positive and the other is negative
(or both are zero). Hence there must be a zero of P between −√

r and
√
r.

11. Let us write P(x) = (x− x1) · · · (x− xm)(x2− p1x+q1) · · · (x2− pnx+qn), where the polyno-
mials x2− pkx+qk have no real zeros. We have

1> |P(i)| =
m

∏
j=1

|i− x j|
n

∏
k=1

|−1− pki+qk|,

and since |i− x j|2 = 1+ x2j > 1 for all j, we must have |−1− pki+qk| < 1 for some k, i.e.

p2k+(qk−1)2 < 1. (∗)

Let a±bi be the zeros of the polynomial x2− pkx+qk (and also of the polynomial P). Then
pk = 2a and qk = a2+ b2, so the inequality (∗) becomes 4a2+(a2+ b2− 1)2 < 1, which is
equivalent to the desired inequality.

12. Write f in the form f = P/Q, where P and Q are coprime polynomials and Q is monic.
Comparing the leading coefficients we conclude that P is also monic. The condition of the
problem becomes P(x2)/Q(x2) = P(x)2/Q(x)2− a. Since P(x2) and Q(x2) are coprime (if
they have a common zero, so do P and Q), it follows that Q(x2) =Q(x)2 and hence Q(x) = xn
for some n ∈ N. Therefore, P(x2) = P(x)2−ax2n.
Let P(x) = a0+a1x+ · · ·+am−1xm−1+xm. Comparing the coefficients of P(x)2 and P(x2) we
find that an−1 = · · · = a2m−n+1 = 0, a2m−n = a/2, a1 = · · · = am−1 = 0 and a0 = 1. Clearly,
this is only possible if a= 0, or a= 2 and 2m−n= 0.

13. Since P is symmetric with respect to point 0, it is easy to show that P is also a polynomial
in x2, so there is a polynomial Q such that P(x) = Q(x2 + 1) or P(x) = xQ(x2 + 1). Then
Q((x2+1)2+1) = Q(x2+1)2−1, respectively (x2+1)Q((x2+1)2+1) = x2Q(x2+1)2+1.
The substitution x2+1= y yieldsQ(y2+1) =Q(y)2+1, resp. yQ(y2+1) = (y−1)Q(y)2+1.
Suppose that yQ(y2+1)= (y−1)Q(y)2+1. Setting y= 1 gives usQ(2) = 1. Note that if a �= 0
andQ(a) = 1 then aQ(a2+1) = (a−1)+1, so Q(a2+1) = 1 as well. This leads to an infinite
sequence (an) of points at which Q takes the value 1, given by a0 = 2 and an+1 = a2n+1. We
conclude that Q≡ 1.
We have shown that if Q �≡ 1, then P(x) = Q(x2+ 1). Now we easily come to all solutions:
these are the polynomials of the form T (T (· · · (T (x)) · · · )), where T (x) = x2+1.
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14. Let us denote P(1) = a. We have a2−2a−2= 0. Since P(x) = (x−1)P1(x)+a, substituting
in the original equation and simplifying yields (x− 1)P1(x)2 + 2aP1(x) = 4(x+ 1)P1(2x2−
1). For x = 1 we have 2aP1(1) = 8P1(1), which together with a �= 4 implies P1(1) = 0, i.e.
P1(x) = (x−1)P2(x), so P(x) = (x−1)2P2(x)+a. Assume that P(x) = (x−1)nQ(x)+a, where
Q(1) �= 0. Again substituting in the original equation and simplifying yields (x−1)nQ(x)2+
2aQ(x) = 2(2x+ 2)nQ(2x2− 1), which implies that Q(1) = 0, a contradiction. We conclude
that P(x) = a.

15. At first, note that there exists x= a for which P(a)2 = Q(a)2. This follows from the fact that,
if p and q are real roots of P and Q respectively, then P(p)2−Q(p)2 ≤ 0 ≤ P(q)2−Q(q)2,
whereby P2−Q2 is a continuous function. Then we also have P(b) = Q(b) for b = 1+ a+
P(a)2. Assuming that a is the largest real number with P(a) =Q(a), we come to an immediate
contradiction.

16. Let P(x)= a0+a1x+ · · ·+anxn. For every x the triple (a,b,c)= (6x,3x,−2x) satisfies the con-
dition ab+bc+ca= 0. The condition in P gives us P(3x)+P(5x)+P(−8x)= 2P(7x) for all x,
so by comparing the coefficients on both sides we obtain K(i) =

(

3i+5i+(−8)i−2 ·7i
)

= 0
whenever ai �= 0. Since K(i) is negative for odd i and positive for i= 0 and even i≥ 6, ai = 0
is only possible for i = 2 and i = 4. Therefore, P(x) = a2x2+ a4x4 for some real numbers
a2,a4. It is easily verified that all such P(x) satisfy the conditions.

17. Let d be the degree of P. There is a unique polynomial Q of degree at most d such that
Q(k) = ak for k = 1,2, . . . ,d+1. Let us show that Q(n) = an for all n.

Let n > d+ 1. Polynomial Q might not have integral coefficients, so we cannot deduce that
n−m |Q(n)−Q(m), but it certainly has rational coefficients, i.e. there is a natural numberM
for which R(x) =MQ(x) has integral coefficients. By the condition of the problem, M(an−
Q(n))=M(an−ak)−(R(n)−R(k)) is divisible by n−k for each k= 1,2, . . . ,d+1. Therefore,
for each n we either have an = Q(n) or

Ln = lcm(n−1,n−2, . . .,n−d−1)≤M(an−Q(n)) <Cnd

for some constantC independent of n.

Suppose that an �= Q(n) for some n. note that Ln is not less than the product (n− 1) · · ·(n−
d− 1) divided by the product P of numbers gcd(n− i,n− j) over all pairs (i, j) of different
numbers from {1,2, . . . ,d+ 1}. Since gcd(n− i,n− j) ≤ i− j, we have P ≤ 1d2d−1 · · ·d. It
follows that

(n−1)(n−2) · · ·(n−d−1) ≤ PLn <CPnd,

which is false for large enough n as the left hand side is of degree d+1. Thus, an = Q(n) for
each sufficiently large n, say n> N.

What happens for n ≤ N? By the condition of the problem, M(an−Q(n)) = M(an− ak)−
(R(n)− R(k)) is divisible by m− n for every m > N, so it must be equal to zero. Hence
an = Q(n) for all n.

18. We have shown in 7 from the text that every such t satisfies P(P(t)) = t. If every such t also
satisfies P(t) = t, the number of solutions is clearly at most degP= n. Suppose that P(t1) = t2,
P(t2) = t1, P(t3) = t4 i P(t4) = t3, where t1 �= t2,3,4. By theorem 10, t1− t3 divides t2− t4 and
vice versa, from which we deduce that t1− t3 = ±(t2− t4). Assume that t1− t3 = t2− t4, i.e.
t1− t2 = t3− t4 = k �= 0. Since the relation t1− t4 = ±(t2− t3) similarly holds, we obtain
t1− t3+ k = ±(t1− t3− k) which is impossible. Therefore, we must have t1− t3 = t4− t2,
which gives us P(t1)+ t1 = P(t3)+ t3 = c for some c. It follows that all integral solutions t of
the equation P(P(t)) = t satisfy P(t)+ t = c, and hence their number does not exceed n.
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19. Suppose that R= P−Q �= 0 and that 0< k ≤ n−1 is the degree of R(x). Then

P(P(x))−Q(Q(x)) = [Q(P(x))−Q(Q(x))]+R(P(x)).

Writing Q(x) = xn+ · · ·+a1x+a0 yields

Q(P(x))−Q(Q(x)) = [P(x)n−Q(x)n]+ · · ·+a1[P(x)−Q(x)],

where all the summands but the first have a degree at most n2− n, while the first summand
equals R(x) ·

(

P(x)n−1+P(x)n−2Q(x)+ · · ·+Q(x)n−1
)

and has the degree n2−n+ k with the
leading coefficient n. Therefore the degree of Q(P(x))−Q(Q(x)) is n2−n+ k. On the other
hand, the degree of the polynomial R(P(x)) equals kn < n2−n+ k, from which we conclude
that the difference P(P(x))−Q(Q(x)) has the degree n2−n+ k, a contradiction.

It remains to check the case of a constant R ≡ c. Then the condition P(P(x)) = Q(Q(x))
yields Q(Q(x) + c) = Q(Q(x))− c, so the equality Q(y+ c) = Q(y)− c holds for infinitely
many values of y; hence Q(y+ c)≡Q(y)− c which is only possible for c= 0 (to see this, just
compare the coefficients).

20. Suppose that f (x) = g(x)h(x) for some nonconstant polynomials with integer coefficients.
Since | f (0)| = p, either |g(0)| = 1 or |h(0)| = 1 holds. Assume w.l.o.g. that |g(0)| = 1.
Write g(x) = (x−α1) · · · (x−αk). Then |α1 · · ·αk|= 1. Since f (αi)− p= αmi (αi−a)n =−p,
taking the product over i = 1,2, . . . ,k yields |g(a)|n = |(α1 − a) · · · (αk − a)|n = pk. Since
g(a) divides |g(a)h(a)| = p, we must have |g(a)| = p and n = k. However, a must divide
|g(a)−g(0)|= p±1, which is impossible.

21. Suppose that F = G ·H for some polynomials G,H with integer coefficients. Let us consider
this equality modulo 2. Since (x2 + x+ 1)2n ≡ F(x) (mod 2), we obtain (x2 + x+ 1)2n =
g(x)h(x), where g ≡ G and h ≡ H are polynomials over Z2. The polynomial x2 + x+ 1 is
irreducible over Z2[x], so there exists a natural number k for which g(x) = (x2+ x+ 1)k and
h(x) = (x2+ x+1)2n−k; of course, these equalities hold in Z2[x] only.

Back in Z[x], these equalities become H(x) = (x2+ x+1)2n−k+2V(x) and G(x) = (x2+ x+
1)k+2U(x) for some polynomialsU and V with integer coefficients. Thus,

[(x2+ x+1)k+2U(x)][(x2+ x+1)2
n−k+2V(x)] = F(x).

Now if we set x = ε = −1+i
√
3

2 in this equality, we obtain U(ε)V (ε) = 1
4F(ε) = 1

2 . However,
this is impossible as the polynomialU(x)V (x) has integer coefficients, so U(ε)V (ε) must be
of the form a+bε for some a,b ∈ Z (since ε2 = −1− ε), which is not the case with 12 .

22. It is clear, for example by theorem 16, that P must have rational coefficients. For some m ∈ N

the coefficients of the polynomialmP(x) are integral. Let p be a prime number not dividingm.
We claim that, if P is not linear, there is no rational number x for which P(x) = 1

mp . Namely,
such an x would also satisfy Q(x) = mpP(x)−1= 0. On the other hand, the polynomialQ(x)
is irreducible because so is the polynomial xnQ(1/x) by the Eisenstain criterion; indeed, all the
coefficients of xnQ(1/x) but the first are divisible by p and the constant term is not divisible
by p2. This proves our claim.

23. Denote P(x) = Pn(x) = Rn(x)+ iSn(x). We prove by induction on n that all zeros of Pn are
real; moreover, if x1 > x2 > · · · > xn are the zeros of Rn and y1 > y2 > · · · > yn−1 the zeros of
Rn−1, then

x1 > y1 > x2 > y2 > · · · > xn−1 > yn−1 > xn.

This statement is trivially true for n= 1. Suppose that it is true for n−1.
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Since Rn+ iSn = (x− i+ n)(Rn−1+ iSn−1), the polynomials Rn and Sn satisfy the recurrent
relations Rn = (x+n)Rn−1+Sn−1 and Sn = (x+n)Sn−1−Rn−1. This gives us

Rn− (2x+2n−1)Rn−1+[(x+n−1)2+1]Rn−2 = 0.

If z1 > · · ·> zn−2 are the (real) zeros Rn−2, by the inductive hypothesis we have zi−1 > yi > zi.
Since the value of Rn−2 is alternately positive and negative on the intervals (z1,+∞), (z2,z1),
etc, it follows that sgnRn−2(yi) = (−1)i−1. Now we conclude from the relation Rn(yi) =
−[(x+n−1)2+1]Rn−2(yi) that

sgnRn(yi) = (−1)i,

which means that the polynomial Rn has a zero on each of the n intervals (y1,+∞), (y2,y1),
. . . , (−∞,yn−1). This finishes the induction.

24. We first prove the following auxiliary statement.

Lemma. If A,B andC are coprime polynomials with A+B=C, then the degree of each of the
polynomials A,B,C is less than the number of different zeros of the polynomial ABC.

Proof. Let

A(x) =
k

∏
i=1

(x− pi)ai , B(x) =
l

∏
i=1

(x−qi)bi , C(x) =
m

∏
i=1

(x− ri)ci .

Let us rewrite the given equality as A(x)/C(x)+B(x)/C(x) = 1 and differentiate it with
respect to x. We obtain

A(x)
C(x)

(

k

∑
i=1

ai
x− pi

−
m

∑
i=1

ci
x− ri

)

= −B(x)
C(x)

(

l

∑
i=1

bi
x−qi

−
m

∑
i=1

ci
x− ri

)

,

from which we see that A(x)/B(x) can be expressed as a quotient of two polynomials of
degree not exceeding k+ l+m− 1. The statement follows from the coprimeness of A
and B.

Now we apply the Lemma on the polynomials Pa,Qb,Rc. We obtain that each of the numbers
adegP, bdegQ, cdegR is less than degP+degQ+degR, and therefore

1
a

>
degP

degP+degQ+degR
,

etc. Adding these yields the desired inequality.

25. Let us fix degP= n. Let P(x) = (x− z1) · · · (x− zn) = xn+an−1xn−1+ · · ·+a0, where |zi| = 1
for i= 1, . . . ,n. By the Vieta formulas, an−i=±σi(z1, . . . ,zn), which is a sum of

(n
i
)

summands
of modulus 1, and hence |an−i| ≤

(n
i
)

. Therefore, there are at most 2
(m
i
)

+1 possible values of
the coefficient of P(x) at xn−i for each i. Thus the number of possible polynomials P of degree
n is finite.
Now consider the polynomial Pr(x) = (x− zr1) · · · (x− zrn) for each natural number r. All
coefficients of polynomial Pr are symmetric polynomials in zi with integral coefficients, so by
the theorem 24 they must be integers. Therefore, every polynomial Pr satisfies the conditions
of the problem, but there are infinitely many r’s and only finitely many such polynomials. We
conclude that Pr(x) = Ps(x) for some distinct r,s ∈ N, and the main statement of the problem
follows.
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1 Introduction
Generating functions are powerful tools for solving a number of problems mostly in combinatorics,
but can be useful in other branches of mathematics as well. The goal of this text is to present certain
applications of the method, and mostly those using the high school knowledge.
In the beginning we have a formal treatement of generating functions, i.e. power series. In other

parts of the article the style of writing is more problem-soving oriented. First we will focus on
solving the reccurent equations of first, second, and higher order, after that develope the powerful
method of ,,the snake oil“, and for the end we leave some other applications and various problems
where generating functions can be used.
The set of natural numbers will be denoted by N, while N0 will stand for the set of non-negative

integers. For the sums going from 0 to +∞ the bounds will frequently be omitted – if a sum is
without the bounds, they are assumed to be 0 and +∞.

2 Theoretical Introduction
In dealing with generating functions we frequently want to use different transformations and ma-
nipulations that are illegal if the generating functions are viewed as analytic functions. Therefore
they will be introduced as algebraic objects in order to obtain wider range of available methods. The
theory we will develope is called the formal theory of power series.

Definition 1. A formal power series is the expression of the form

a0+a1x+a2x2+ · · · =
∞

∑
i=0
aixi.

A sequence of integers {ai}∞
0 is called the sequence of coefficients.

Remark. We will use the other expressions also: series, generating function...
For example the series

A(x) = 1+ x+22x2+33x3+ · · ·+nnxn+ · · ·

250



2 Olympiad Training Materials, www.imomath.com

converges only for x= 0 while, in the formal theory this is well defined formal power series with the
correspongind sequence of coefficients equal to {ai}∞

0 ,ai = ii.
Remark. Sequences and their elements will be most often denoted by lower-case latin letters (a, b,
a3 · · · ), while the power series generated by them (unless stated otherwise) will be denoted by the
corresponding capital letters (A, B, · · · ).

Definition 2. Two series A =
∞

∑
i=0
aixi and B =

∞

∑
i=0
bixi are called equal if their corresponding se-

quences of coefficients are equal, i.e. ai = bi for every i ∈ N0.

Remark. The coefficient near xn in the power series F will be denoted by [xn]F .
We can define the sum and the difference of power series in the following way

∑
n
anxn±∑

n
bnxn = ∑

n
(an±bn)xn

while the product is defined by

∑
n
anxn∑

n
bnxn = ∑

n
cnxn, cn = ∑

i
aibn−i

Instead of F ·F we write F2, and more generally Fn+1 = F ·Fn. We see that the neutral for
addition is 0, and 1 is the neutral for multiplication. Now we can define the following term:

Definition 3. The formal power series G is reciprocal to the formal power series F if FG= 1.

The generating function reciprocal to F will be usually denoted by 1/F. Since the multiplication
is commutative we have that FG= 1 is equivalent to GF = 1 hence F andG are mutually reciprocal.
We also have (1−x)(1+x+x2+ · · ·) = 1+∑∞

i=1(1 ·1−1 ·1)xi= 1 hence (1−x) and (1+x+x2+ · · ·)
are mutually reciprocal.

Theorem 1. Formal power series F = ∑
n
anxn has a reciprocal if and only if a0 �= 0. In that case

the reciprocal is unique.

Proof. Assume that F has a reciprocal given by 1/F = ∑
n
bnxn. Then F · (1/F) = 1 implying

1= a0b0 hence a0 �= 0. For n� 1 we have 0= ∑
k
akbn−k from where we conclude.

bn = − 1
a0 ∑

k
akbn−k.

The coefficients are uniquely determined by the prefious formula.
On the other hand if a0 �= 0 we can uniquely determine all coefficients bi using the previously

established relations which gives the series 1/F. �

Now we can conclude that the set of power series with the above defined operation forms a ring
whose invertible elements are precisely those power series with the non-zero first coefficient.
If F = ∑

n
fnxn is a power series, F(G(x)) will denote the series F(G(x)) = ∑

n
fnG(x)n. This

notation will be used also in the case when F is a polynomial (i.e. when there are only finitely many
non-zero coefficients) or if the free term of G equals 0. In the case that the free term of G equal to 0,
and F is not a polynomial, we can’t determine the particular element of the series F(G(x)) in finitely
many steps.

Definition 4. A formal power series G is said to be an inverse of F if F(G(x)) = G(F(x)) = x.

We have a symmetry here as well, if G is inverse of F than F is inverse of G as well.

251
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Theorem 2. Let F and G be mutually inverse power series. Then F = f1x+ f2x2+ · · · , G= g1x+
g2x2+ · · · , and f1g1 �= 0.

Proof. In order for F(G(x)) and G(F(x)) to be defined we must have 0 free terms. Assume that
F = frxr+ · · · and G= gsxs+ · · · . Then F(G(x)) = x= frgrsxrs+ · · · , thus rs= 1 and r = s= 1. �

Definition 5. The derivative of a power series F = ∑
n
fnxn is F ′ = ∑

n
n fnxn−1. The derivative of

order n> 1 is defined recursively by F(n+1) = (F (n))′.

Theorem 3. The following properties of the derivative hold:

• (F+G)(n) = F (n) +G(n)

• (FG)(n) = ∑ni=0
(n
i
)
F(i)G(n−i)

The proof is very standard as is left to the reader. �

We will frequently associate the power series with its generating sequence, and to make writing
more clear we will define the the relation osr↔ in the following way:

Definition 6. Aosr↔ {an}∞
0 means that A is a usual power series which is generated by {an}∞

0 , i.e.
A= ∑

n
anxn.

Assume that Aosr↔ {an}∞
0 . Then

∑
n
an+1xn =

1
x ∑
n>0
anxn =

A(x)−a0
x

or equivalently {an+1}∞
0
osr
↔
A−a0
x

. Similarly

{an+2}∞
0
osr
↔

(A−a0)/x−a1
x

=
A−a0−a1x

x2
.

Theorem 4. If {an}∞
0
osr
↔ A the for h> 0:

{an+h}∞
0
osr
↔
A−a0−a1x−·· ·−ah−1xh−1

xh
.

Proof. We will use the induction on h. For h = 1 the statement is true and that is shown before. If
the statement holds for some h then

{an+h+1}∞
0

osr
↔ {a(n+h)+1}∞

0
osr
↔

A−a0−a1x−·· ·−ah−1xh−1
xh

−ah
x

osr
↔

A−a0−a1x−·· ·−ahxh
xh+1

,

which finishes the proof. �

We already know that {(n+1)an+1}∞
0
osr
↔ A′. Our goal is to obtain the sequence {nan}∞

0 . That is
exactly the sequence xA′. We will define the operator xD in the following way:

Definition 7. xDA= xA′ i.e. xDA= xdAdx .

The following two theorems are obvious consequences of the properties of the derivative:

Theorem 5. Let {an}∞
0
osr
↔ A. Then {nkan}∞

0
osr
↔ (xD)kA.
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Theorem 6. Let {an}∞
0
osr
↔ A and P be a polynomial. Then

P(xD)Aosr↔ {P(n)an}∞
0

Let us consider the generating function
A
1− x . It can be written as A

1
1−x . As we have shown

before the reciprocal to the series 1− x is 1+ x+ x2+ · · · , hence A
1−x = (a0+a1x+a2x2+ · · ·)(1+

x+ x2+ · · ·) = a0+(a0+a1)x+(a0+a1+a2)x2+ · · · .

Theorem 7. If {an}∞
0
osr
↔ A then

A
1− x

osr
↔

{
n

∑
j=0
a j

}
n�0

.

Now we will introduce the new form of generating functions.

Definition 8. We say that A is exponential generating function (or series, power series) of the se-
quence {an}∞

0 if A is the ususal generating function of the sequence { ann! }∞
0 , or equivalently

A= ∑
n

an
n!
xn.

If B is exponential generating function of the series {bn}∞
0 we can also write {bn}∞

0
esr
↔ B.

If Besr↔ {bn}∞
0 , we are interested in B

′. It is easy to see that

B′ =
∞

∑
n=1

nbnxn−1

n!
=

∞

∑
n=1

bnxn−1

(n−1)! =
∞

∑
n=0

bn+1xn

n!

hence B′ esr↔ {bn+1}∞
0 .

Theorem 8. If {bn}∞
0
esr
↔ B then for h� 0:

{bn+h}∞
0

osr
↔ B(h).

We also have an equivalent theorem for exponential generating functions.

Theorem 9. Let {bn}∞
0
esr
↔ B and let P be a polynomial. Then

P(xD)Besr↔ {P(n)bn}∞
0

The exponential generating functions are useful in combinatorial identities because of the fol-
lowing property.

Theorem 10. Let {an}∞
0
esr
↔ A and {bn}∞

0
esr
↔ B. Then the generating function AB generates the se-

quence {
∑
k

(
n
k

)
akbn−k

}∞

n=0

.

Proof.We have that

AB=

{
∞

∑
i=0

aixi

i!

}{
∞

∑
j=0

b jx j

j!

}
= ∑
i, j�0

aib j
i! j!

xi+ j = ∑
n
xn

{
∑
i+ j=n

aib j
i! j!

}
,

or

AB= ∑
n

xn

n!

{
∑
i+ j=n

n!aib j
i! j!

}
= ∑

n

xn

n!∑k

(
n
k

)
akbn−k,
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and the proof is complete. �

We have listed above the fundamental properties of generating functions. New properties and
terms will be defined later.
Although the formal power series are defined as solely algebraic objects, we aren’t giving up

their analytical properties. We will use the well-known Taylor’s expansions of functions into power
series. For example, we will treat the function ex as a formal power series obtained by expanding the

function into power series, i.e. we will identify ex with
∞

∑
n=0

xn

n!
. We will use the converse direction

also. Here we will list the Taylor expansions of most common functions.

1
1− x = ∑

n�0
xn

ln
1
1− x = ∑

n�1

xn

n

ex = ∑
n�0

xn

n!

sinx= ∑
n�0

(−1)n x2n+1

(2n+1)!

cosx= ∑
n�0

(−1)n x
2n

(2n)!

(1+ x)α = ∑
k

(
α
k

)
xk

1
(1− x)k+1 = ∑

n

(
n+ k
n

)
xn

x
ex−1 = ∑

n�0

Bnxn

n!

arctanx= ∑
n�0

(−1)n x
2n+1

2n+1

1
2x

(1−
√
1−4x) = ∑

n

1
n+1

(
2n
n

)
xn

1√
1−4x

= ∑
n

(
2n
n

)
xn

xcotx= ∑
n�0

(−4)nB2n
(2k)!

x2n

tanx= ∑
n�1

(−1)n−1 2
2n(22n−1)B2n

(2n)!
x2n−1

x
sinx

= ∑
n�0

(−1)n−1 (4
n−2)B2n
(2n)!

x2n

1√
1−4x

(
1−

√
1−4x
2x

)k
= ∑

n

(
2n+ k
n

)
xn
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(
1−

√
1−4x
2x

)k
= ∑
n�0

k(2n+ k−1)!
n!(n+ k)!

xn

arcsinx= ∑
n�0

(2n−1)!!x2n+1
(2n)!!(2n+1)

ex sinx= ∑
n�1

2 n2 sin nπ4
n!

xn

ln2
1
1− x = ∑

n�2

Hn−1
n
xn

√
1−

√
1− x
x

=
∞

∑
n=0

(4n)!
16n

√
2(2n)!(2n+1)!

xn

(
arcsinx
x

)2
=

∞

∑
n=0

4nn!2

(k+1)(2k+1)!
x2n

Remark: Here Hn =
n

∑
i=1

1
i
, and Bn is the n-th Bernoulli number.

3 Recurrent Equations
We will first solve one basic recurrent equation.

Problem 1. Let an be a sequence given by a0 = 0 and an+1 = 2an+ 1 for n � 0. Find the general
term of the sequence an.

Solution. We can calculate the first several terms 0, 1, 3, 7, 15, and we are tempted to guess the
solution as an = 2n−1. The previous formula can be easily established using mathematical induction
but we will solve the problem using generating functions. Let A(x) be the generating function of
the sequence an, i.e. let A(x) = ∑

n
anxn. If we multiply both sides of the recurrent relation by xn and

add for all n we get

∑
n
an+1xn =

A(x)−a0
x

=
A(x)
x

= 2A(x)+
1
1− x = ∑

n
(2an+1)xn.

From there we easily conclude
A(x) =

x
(1− x)(2− x) .

Now the problem is obtaining the general formula for the elements of the sequence. Here we will
use the famous trick of decomposing A into two fractions each of which will have the corresponding
generating function. More precisely

x
(1− x)(2− x) = x

(
2

1−2x−
1
1− x

)
= (2x+22x2+ · · ·)− (x+ x2+ · · ·).

Now it is obvious that A(x) =
∞

∑
n=0

(2n − 1)xn and the solution to the recurrent relation is indeed

an = 2n−1. �

Problem 2. Find the general term of the sequence given recurrently by

an+1 = 2an+n, (n� 0), a0 = 1.
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Solution. Let {an}∞
0
osr
↔ A. Then {an+1}∞

0
osr
↔

A−1
x . We also have that xD

1
1−x

osr
↔ {n ·1}. Since xD 1

1−x =

x 1
(1−x)2 = x

(1−x)2 the recurrent relation becomes

A−1
x

= 2A+
x

(1− x)2 .

From here we deduce

A=
1−2x+2x2

(1− x)2(1−2x) .

Now we consider that we have solved for the generating series. If we wanted to show that the
sequence is equal to some other sequence it would be enough to show that the functions are equal.
However we need to find the terms explicitely. Let us try to represent A again in the form

1−2x+2x2
(1− x)2(1−2x) =

P
(1− x)2 +

Q
1− x+

R
1−2x .

After multiplying both sides with (1− x)2(1−2x) we get

1−2x+2x2= P(1−2x)+Q(1− x)(1−2x)+R(1− x)2,

or equivalently

1−2x+2x2= x2(2Q+R)+ x(−2P−3Q−2R)+ (P+Q+R).

This implies P= −1, Q= 0, and R= 2. There was an easier way to get P, Q, and R. If we multiply
both sides by (1− x)2 and set x = 1 we get P= −1. Similarly if we multiply everything by 1− 2x
and plug x= 1

2 we get R= 2. Now substituting P and R and setting x= 0 we get Q= 0.
Thus we have

A=
−1

(1− x)2 +
2

1−2x .

Since
2

1−2x
osr
↔ {2n+1} and 1

(1− x)2 = D
1
1− x

osr
↔ {n+1} we get an = 2n+1−n−1. �

In previous two examples the term of the sequence was depending only on the previous term.
We can use generating functions to solve recurrent relations of order greater than 1.

Problem 3 (Fibonacci’s sequence). F0 = 0, F1 = 1, and for n � 1, Fn+1 = Fn+Fn−1. Find the
general term of the sequence.

Solution. Let F be the generating function of the series {Fn}. If we multiply both sides by xn and
add them all, the left-hand side becomes {Fn+1} osr↔ F−x

x , while the right-hand side becomes F+ xF .
Therefore

F =
x

1− x− x2 .

Now we want to expand this function into power series. First we want to represent the function as a
sum of two fractions. Let

−x2− x+1= (1−αx)(1−βx).

Then α = (1+
√
5)/2, β = (1−

√
5)/2, and α −β =

√
5. We further have

x
1− x− x2 =

x
(1− xα)(1− xβ )

=
1

α −β

(
1

1− xα − 1
1− xβ

)

=
1√
5

{
∞

∑
n=0

αnxn−
∞

∑
n=0

β nxn
}

.
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It is easy to obtain

Fn =
1√
5
(αn−β n). �

Remark: From here we can immediately get the approximate formula for Fn. Since |β | < 1 we have
lim
n→∞

β n = 0 and

Fn ≈
1√
5

(
1+

√
5

2

)n
.

Now we will consider the case with the sequence of two variables.

Problem 4. Find the number of k-element subsets of an n-element set.

Solution. We know that the result is
(n
k
)
, but we want to obtain this using the generating functions.

Assume that the required number is equal to c(n,k). Let A= {a1, . . . ,an} be an n-element set. There
are two types of k-element subsets – those which contain an and those that don’t. There are exactly
c(n−1,k−1) subsets containing an. Indeed they are all formed by taking k−1-element subsets of
{a1, . . . ,an−1} and adding an to each of them. On the other hand there are exaclty c(n−1,k) subsets
not contianing an. Hence

c(n,k) = c(n−1,k)+ c(n−1,k−1).
We also have c(n,0) = 1. Now we will define the generating function of the sequence c(n,k) for a
fixed n. Assume that

Cn(x) = ∑
k
c(n,k)xk.

If we multiply the recurrent relation by xk and add for all k� 1 we get

Cn(x)−1= (Cn−1(x)−1)+ xCn−1(x), for each n� 0

andC0(x) = 1. Now we have for n� 1:

Cn(x) = (1+ x)Cn−1(x).

We finally haveCn(x) = (1+x)n. Hence, c(n,k) is the coefficient near xk in the expansion of (1+x)n,
and that is exactly

(n
k
)
. �

Someone might think that this was a cheating. We have used binomial formula, and that is
obtianed using a combinatorial technique which uses the result we wanted to prove. Fortunately,
there is a proof of binomial formula involving Taylor expainsion.
We can also make a generating function of the sequeceCn(x):

∑
n
Cn(x)yn = ∑

n
∑
k

(
n
k

)
xkyn = ∑

n
(1+ x)nyn =

1
1− y(1+ x)

.

In such a way we have
(n
k
)

= [xkyn](1− y(1+ x))−1. Now we can calculate the sum∑
n

(
n
k

)
yn:

[xk]∑
n

∑
k

(
n
k

)
xkyn = [xk]

1
1− y(1+ x)

=
1
1− y [x

k]
1

1− y
1−y x

=
1
1− y

(
y

1− y

)k
=

yk

(1− y)k+1 .

Hence we have the identities

∑
k

(
n
k

)
xk = (1+ x)n; ∑

n

(
n
k

)
yn =

yk

(1− y)k+1 .

Remark: For n< k we define
(
n
k

)
= 0.
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Problem 5. Find the general term of the sequence an+3 = 6an+2− 11an+1+ 6an, n � 0 with the
initial conditions a0 = 2, a1 = 0, a2 = −2.

Solution. If A is the generating function of the corresponding sequence then:

A−2−0 · x− (−2)x2
x3

= 6
A−2−0 · x

x2
−11A−2

x
+6A,

from where we easily get

A=
20x2−12x+2

1−6x+11x2−6x3 =
20x2−12x+2

(1− x)(1−2x)(1−3x).

We want to find the real coefficients B,C, and D such that

20x2−12x+2
(1− x)(1−2x)(1−3x) =

B
1− x +

C
1−2x+

D
1−3x .

We will multiply both sides by (1− x) and set x = 1 to obtain B = 20−12+2
(−1)·(−2) = 5. Multiplying by

(1−2x) and setting x= 1/2 we further getC = 5−6+2
− 1
4

= −4. If we now substitute the found values
for B andC and put x= 0 we get B+C+D= 2 from where we deduce D= 1. We finally have

A=
5
1− x−

4
1−2x+

1
1−3x =

∞

∑
n=0

(5−4 ·2n+3n)xn

implying an = 5−2n+2+3n. �
The following example will show that sometimes we can have troubles in finding the explicite

formula for the elements of the sequence.

Problem 6. Let the sequence be given by a0 = 0, a1 = 2, and for n� 0:

an+2 = −4an+1−8an.

Find the general term of the sequence.

Solution. Let A be the generating function of the sequence. The recurrent relation can be written in
the form

A−0−2x
x2

= −4A−0
x

−8A

implying

A=
2x

1+4x+8x2
.

The roots r1 =−2+2i and r2 =−2−2i of the equation x2+4x+8 are not real. However this should
interfere too much with our intention for finding B andC. Pretending that nothing wierd is going on
we get

2x
1+4x+8x2

=
B

1− r1x
+

C
1− r2x

.

Using the trick learned above we get B= −i
2 andC = i

2 .
Did you read everything carefully? Why did we consider the roots of the polynomial x2+4x+

8 when the denumerator of A is 8x2 + 4x+ 1?! Well if we had considered the roots of the real
denumerator we would get the fractions of the form B

r1−x which could give us a trouble if we wanted
to use power series. However we can express the denominator as x2(8+41x + 1

x2 ) and consider this
as a polynomial in 1x ! Then the denumerator becomes x

2 ( 1
x − r1

)
·
( 1
x − r2

)
.
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Now we can proceed with solving the problem. We get

A=
−i/2

1− (−2+2i)x
+

i/2
1− (−2−2i)x.

From here we get

A=
−i
2

∞

∑
n=0

(−2+2i)nxn+
i
2

∞

∑
n=0

(−2−2i)nxn,

implying
an =

−i
2

(−2+2i)n+
i
2
(−2−2i)n.

But the terms of the sequence are real, not complex numbers! We can now simplify the expression
for an. Since

−2±2i= 2
√
2e

±3πi
4 ,

we get

an =
i
2
(2
√
2)n

(
(cos

3nπ
4

− isin 3nπ
4

)− (cos
3nπ
4

+ isin
3nπ
4

)

)
,

hence an = (2
√
2)n sin 3nπ4 .Written in another way we get

an =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0, n= 8k
(2
√
2)n, n= 8k+6

−(2
√
2)n, n= 8k+2

1√
2
(2
√
2)n, n= 8k+1 ili n= 8k+3

− 1√
2
(2
√
2)n, n= 8k+5 ili n= 8k+7. �

Now we will consider on more complex recurrent equation.

Problem 7. Find the general term of the sequence xn given by:

x0 = x1 = 0, xn+2−6xn+1+9xn = 2n+n za n� 0.

Solution. Let X(t) be the generating function of our sequence. Using the same methods as in the
examples above we can see that the following holds:

X
t2

−6X
t

+9X =
1

1−2t +
t

(1− t)2 .

Simplifying the expression we get

X(t) =
t2− t3− t4

(1− t)2(1−2t)(1−3t)2 ,

hence
X(t) =

1
4(1− x)2 +

1
1−2x−

5
3(1−3x) +

5
12(1−3x)2 .

The sequence corresponding to the first summand is
n+1
4
, while the sequences for the second, third,

and fourth are 2n, 5 ·3n−1, and 5(n+1)3n+1

12
respectively. Now we have

xn =
2n+2+n+1+5(n−3)3n−1

4
. �
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Milan Novaković: Generating Functions 11

Problem 8. Let f1 = 1, f2n = fn, and f2n+1 = fn+ fn+1. Find the general term of the sequence.

Solution. We see that the sequence is well define because each term is defined using the terms
already defined. Let the generating function F be given by

F(x) = ∑
n�1

fnxn−1.

Multiplying the first given relation by x2n−1, the second by x2n, and adding all of them for n≥ 1 we
get:

f1+ ∑
n�1

f2nx2n−1+ ∑
n�1
f2n+1x2n = 1+ ∑

n�1
fnx2n−1+ ∑

n�1
fnx2n+ ∑

n�1
fn+1x2n

or equivalently
∑
n�1

fnxn−1 = 1+ ∑
n�1
fnx2n−1+ ∑

n�1
fnx2n+ ∑

n�1
fn+1x2n.

This exactly means that F(x) = x2F(x2)+ xF(x2)+F(x2) i.e.

F(x) = (1+ x+ x2)F(x2).

Moreover we have
F(x) =

∞

∏
i=0

(
1+ x2

i
+ x2

i+1
)

.

We can show that the sequence defined by the previous formula has an interesting property. For every
positive integer n we perform the following procedure: Write n in a binary expansion, discard the
last ”block” of zeroes (if it exists), and group the remaining digits in as few blocks as possible such
that each block contains the digits of the same type. If for two numbers m and n the corresponding
sets of blocks coincide the we have fm = fn. For example the binary expansion of 22 is 10110 hence
the set of corresponding blocks is {1,0,11}, while the number 13 is represented as 1101 and has
the very same set of blocks {11,0,1}, so we should have f (22) = f (13). Easy verification gives us
f (22) = f (13)= 5. From the last expressionwe conclude that fn is the number of representations
of n as a sum of powers of two, such that no two powers of two are taken from the same set of a
collection {1,2}, {2,4}, {4,8}.

4 The Method of the Snake Oil
The method of the snake oil is very useful tool in evaluating various, frequently huge combinatorial
sums, and in proving combinatorial identities.
The method is used to calculate many sums and as such it is not universal. Thus we will use

several examples to give the flavor and illustration of the method.
The general principle is as follows: Suppose we want to calculate the sum S. First we wnat to

identify the free variable on which S depends. Assume that n is such a variable and let S = f (n).
After that we have to obtain F(x), the generating function of the sequence f (n). We will multiply
S by xn and summ over all n. At this moment we have (at least) a double summation external in n
and internal in S. Then we interchange the order of summation and get the value of internal sum in
terms of n. In such a way we get certain coefficients of the generating function which are in fact the
values of S in dependence of n.
In solving problems of this type we usually encounter several sums. Here we will first list some

of these sums.
The identity involving∑

n

(
m
n

)
xn is known from before:

(1+ x)m = ∑
n

(
m
n

)
xn.
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Sometimes we will use the identity for∑
n

(
n
k

)
xn which is already mentioned in the list of gen-

erating functions:
1

(1− x)k+1 = ∑
n

(
n+ k
k

)
xn.

Among the common sums we will encounter those involving only even (or odd) indeces. For

example we have (1+ x)m = ∑
n

(
m
n

)
xn, hence (1− x)m = ∑

n

(
m
n

)
(−x)n. Adding and subtracting

yields:

∑
n

(
m
2n

)
x2n =

((1+ x)m+(1− x)m)
2

,

∑
n

(
m

2n+1

)
x2n+1 =

((1+ x)m− (1− x)m)
2

.

In a similar fashion we prove:

∑
n

(
2n
m

)
x2n =

xm

2

(
1

(1− x)m+1 +
(−1)m

(1− x)m+1

)
, and

∑
n

(
2n+1
m

)
x2n+1 =

xm

2

(
1

(1− x)m+1 −
(−1)m

(1− x)m+1

)
.

The following identity is also used quite frequently:

∑
n

1
n+1

(
2n
n

)
xn =

1
2x

(1−
√
1−4x).

Problem 9. Evaluate the sum

∑
k

(
k
n− k

)
.

Solution. Let n be the free variable and denote the sum by

f (n) = ∑
k

(
k

n− k

)
.

Let F(x) be the generating function of the sequence f (n), i.e.

F(x) = ∑
n
xn f (n) = ∑

n
xn∑

k

(
k
n− k

)
= ∑

n
∑
k

(
k

n− k

)
xn.

We can rewrite the previous equation as

F(x) = ∑
k

∑
n

(
k

n− k

)
xn = ∑

k
xk∑

n

(
k
n− k

)
xn−k,

which gives

F(x) = ∑
k
xk(1+ x)k = ∑

k
(x+ x2)k =

1
1− (x− x2) =

1
1− x− x2 .

However this is very similar to the generating function of a Fibonacci’s sequence, i.e. f (n) = Fn+1
and we arrive to

∑
k

(
k
n− k

)
= Fn+1. �
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Problem 10. Evaluate the sum
n

∑
k=m

(−1)k
(
n
k

)(
k
m

)
.

Solution. If n is a fixed number, then m is a free variable on which the sum depends. Let f (m) =
n

∑
k=m

(−1)k
(
n
k

)(
k
m

)
and let F(x) be the generating function of the sequence f (m), i.e. F(x) =

∑m f (m)xm. Then we have

F(x) = ∑
m
f (m)xm = ∑

m
xm

n

∑
k=m

(−1)k
(
n
k

)(
k
m

)
=

= ∑
k�n

(−1)k
(
n
k

)
∑
m�k

(
k
m

)
xm = ∑

k�n

(
n
k

)
(1+ x)k.

Here we have used ∑m�k
(k
m
)
xm = (1+ x)k. Dalje je

F(x) = (−1)n ∑
k�n

(
n
k

)
(−1)n−k(1+ x)k = (−1)n

(
(1+ x)−1

)n
= (−1)nxn

Therefore we obtained F(x) = (−1)nxn and since this is a generating function of the sequence f (m)
we have

f (m) =

{
(−1)n, n= m

0, m< n . �

Problem 11. Evaluate the sum
n

∑
k=m

(
n
k

)(
k
m

)
.

Solution. Let f (m) =
n

∑
k=m

(
n
k

)(
k
m

)
and F(x) = ∑

m
xm f (m). Then we have

F(x) = ∑
m
xm f (m) = ∑

m
xm

n

∑
k=m

(
n
k

)(
k
m

)
= ∑
k�n

(
n
k

)
∑
m�k

(
k
m

)
xm = ∑

k�n

(
n
k

)
(1+ x)k,

implying F(x) = (2+ x)n. Since

(2+ x)n = ∑
m

(
n
m

)
2n−mxm,

the value of the required sum is f (m) =

(
n
m

)
2n−m. �

Problem 12. Evaluate

∑
k

(
n[ k
2
])xk.

Solution. We can divide this into two sums

∑
k

(
n[ k
2
])xk = ∑

k=2k1

(
n[
2k1
2

])x2k1 + ∑
k=2k2+1

(
n[

2k2+1
2

])x2k2+1 =

= ∑
k1

(
n
k1

)
(x2)k1 + x∑

k2

(
n
k2

)
(x2)k2 = (1+ x2)n+ x(1+ x2)n,

or equivalently

∑
k

(
n[ k
2
])xk = (1+ x)(1+ x2)n. �
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Problem 13. Determine the elements of the sequence:

f (m) = ∑
k

(
n
k

)(
n− k[m−k
2

])yk.
Solution. Let F(x) = ∑m xm f (m). We then have

F(x) = ∑
m
xm∑

k

(
n
k

)(
n− k[m−k
2

])yk = ∑
k

(
n
k

)
yk∑

m

(
n− k[m−k
2

])xm =

= ∑
k

(
n
k

)
ykxk∑

m

(
n− k[m−k
2

])xm−k = ∑
k

(
n
k

)
ykxk(1+ x)(1+ x2)n−k.

Hence
F(x) = (1+ x)∑

k

(
n
k

)
(1+ x2)n−k(xy)k = (1+ x)(1+ x2+ xy)n.

For y = 2 we have that F(x) = (1+ x)2n+1, implying that F(x) is the generating function of the
sequence

(2n+1
m

)
and we get the following combinatorial identity:

∑
k

(
n
k

)(
n− k[m−k
2

])2k =

(
2n+1
m

)
.

Setting y=−2 we get F(x) = (1+x)(1−x)2n = (1−x)2n+x(1−x)2n hence the coefficient near xm

equals
(
2n
m

)
(−1)m+

(
2n
m−1

)
(−1)m−1 = (−1)m

[(
2n
m

)
−

(
2n
m−1

)]
which implies

∑
k

(
n
k

)(
n− k[m−k
2

])(−2)k = (−1)m
[(
2n
m

)
−

(
2n
m−1

)]
. �

Problem 14. Prove that

∑
k

(
n
k

)(
k
j

)
xk =

(
n
j

)
x j(1+ x)n− j

for each n� 0

Solution. If we fix n and let j be the free variable and f ( j) = ∑
k

(
n
k

)(
k
j

)
xk, g( j) =

(n
j
)
x j(1+x)n− j,

then the corresponding generating functions are

F(y) = ∑
j
y j f ( j), G(y) = ∑

j
y jg( j).

We want to prove that F(y) = G(y). We have

F(y) = ∑
j
y j∑

k

(
n
k

)(
k
j

)
xk = ∑

k

(
n
k

)
xk∑

j

(
k
j

)
y j = ∑

k

(
n
k

)
xk(1+ y)k,

hence F(y) = (1+ x+ xy)n. On the other hand we have

G(y) = ∑
j
y j
(
n
j

)
x j(1+ x)n− j = ∑

j

(
n
j

)
(1+ x)n− j(xy) j = (1+ x+ xy)n,

hence F(y) = G(y). �
The real power of the generating functions method can be seen in the following example.
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Problem 15. Evaluate the sum

∑
k

(
n+ k
m+2k

)(
2k
k

)
(−1)k
k+1

for m,n� 0.

Solution. Since there are quite a lot of variables elementary combinatorial methods doesn’t offer an
effective way to treat the sum. Since n appears on only one place in the sum, it is natural to consider
the sum as a function on n Let F(x) be the generating series of such functions. Then

F(x) = ∑
n
xn∑

k

(
n+ k
m+2k

)(
2k
k

)
(−1)k
k+1

= ∑
k

(
2k
k

)
(−1)k
k+1

x−k∑
n

(
n+ k
m+2k

)
xn+k =

= ∑
k

(
2k
k

)
(−1)k
k+1

x−k
xm+2k

(1− x)m+2k+1 =
xm+2k

(1− x)m+2k+1 ∑
k

(
2k
k

)
1
k+1

{ −x
(1− x)2

}k
=

=
−xm−1

2(1− x)m−1

{
1−

√
1+

4x
(1− x)2

}
=

−xm−1
2(1− x)m−1

{
1− 1+ x

1− x

}
=

xm

(1− x)m .

This is a generating function of the sequence
(
n−1
m−1

)
which establishes

∑
k

(
n+ k
m+2k

)(
2k
k

)
(−1)k
k+1

=

(
n−1
m−1

)
. �

Problem 16. Prove the identity

∑
k

(
2n+1
k

)(
m+ k
2n

)
=

(
2m+1
2n

)
.

Solution. Let F(x) = ∑
m
xm∑

k

(
2n+1
k

)(
m+ k
2n

)
and G(x) = ∑

m
xm

(
2m+1
2n

)
the generating func-

tions of the expressions on the left and right side of the required equality. We will prove that
F(x) = G(x). We have

F(x) = ∑
m
xm∑

k

(
2n+1
k

)(
m+ k
2n

)
= ∑

k

(
2n+1
2k

)
∑
m

(
m+ k
2n

)
=

= ∑
k

(
2n+1
2k

)
∑
m

(
m+ k
2n

)
xm = ∑

k

(
2n+1
2k

)
x−k∑

m

(
m+ k
2n

)
xm+k =

= ∑
k

(
2n+1
2k

)
x−k

x2n

(1− x)2n+1 =
x2n

(1− x)2n+1 ∑
k

(
2n+1
2k

)(
x−

1
2
)2k

.

We already know that∑
k

(
2n+1
2k

)(
x−

1
2
)2k

=
1
2

((
1+

1√
x

)2n+1
+

(
1− 1√

x

)2n+1)
so

F(x) =
1
2
(
√
x)2n−1

(
1

(1−√
x)2n+1

− 1
(1+

√
x)2n+1

)
.

On the other hand

G(x) = ∑
m

(
2m+1
2n

)
xm =

(
x−1/2

)
∑
m

(
2m+1
2n

)(
x1/2

)2m+1
,
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implying

G(x) =
(
x−1/2

)[
(x1/2)2n

2

(
1

(1− x1/2)2n+1 − (−1)2n 1
(1+ x1/2)2n+1

)]
,

or
G(x) =

1
2
(
√
x)2n−1

(
1

(1−√
x)2n+1

− 1
(1+

√
x)2n+1

)
. �

Problem 17. Prove that
n

∑
k=0

(
2n
2k

)(
2k
k

)
22n−2k =

(
4n
2n

)
.

Let n be the free variable on the left and right side of F(x) and G(x). We want to prove the
equality of these generating functions.

F(x) = ∑
n
xn ∑
0�k�n

(
2n
2k

)(
2k
k

)
22n−2k = ∑

0�k

(
2k
k

)
2−2k∑

n

(
2n
2k

)
xn22n,

F(x) = ∑
0�k

(
2k
k

)
2−2k∑

n

(
2n
2k

)
(2
√
x)2n.

Now we use the formula for summation of even powers and get

∑
n

(
2n
2k

)
(2
√
x)2n =

1
2
(2
√
x)2k

(
1

(1−2√x)2k+1 +
1

(1+2
√
x)2k+1

)
,

and we further get

F(x) =
1

2(1−2√x) ∑
k

(
2k
k

)(
x

(1−2√x)2
)k

+
1

2(1+2
√
x) ∑

k

(
2k
k

)(
x

(1+2
√
x)2

)k
.

Since∑
n

(
2n
n

)
xn =

1√
1−4x

we get

F(x) =
1

2(1−2√x) ·
1√

1−4 x
(1−2√x)2

+
1

2(1+2
√
x)

· 1√
1−4 x

(1+2
√
x)2

,

which implies

F(x) =
1

2
√
1−4√x

+
1

2
√
1+4

√
x
.

On the other hand for G(x) we would like to get the sum∑
n

(
4n
2n

)
xn. Since∑

n

(
2n
n

)
xn =

1√
1−4x

we have∑
n

(
2n
n

)
(−x)n =

1√
1+4x

hence

G(x) =
1
2

(
1√

1−4√x
+

1√
1+4

√
x

)

and F(x) =G(x). �
The followng problem is slightly harder because the standard idea of snake oil doesn’t lead to a

solution.
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Problem 18 (Moriati). For given n and p evaluate

∑
k

(
2n+1

2p+2k+1

)(
p+ k
k

)
.

Solution. In order to have shorter formulas let us introduce r= p+k. If we assume that n is the free
variable then the required sum is equal to

f (n) = ∑
r

(
2n+1
2r+1

)(
r
p

)
.

Take F(x) = ∑
n
x2n+1 f (n). This is somehow natural since the binomial coefficient contains the term

2n+1. Now we have

F(x) = ∑
n
x2n+1∑

r

(
2n+1
2r+1

)(
r
p

)
= ∑

r

(
r
p

)
∑
n

(
2n+1
2r+1

)
x2n+1.

Since

∑
n

(
2n+1
2r+1

)
x2n+1 =

x2r+1

2

(
1

(1− x)2r+2 +
1

(1+ x)2r+2

)
,

we get

F(x) =
1
2
· x
(1− x)2 ∑

r

(
r
p

)(
x2

(1− x)2
)r

+
1
2
· x
(1+ x)2 ∑

r

(
r
p

)(
x2

(1+ x)2

)r
,

F(x) =
1
2

x
(1− x)2

(
x2

(1−x)2
)p

(
1− x2

(1−x)2
)p+1 +

1
2

x
(1+ x)2

(
x2

(1+x)2

)p
(
1− x2

(1+x)2

)p+1 ,

F(x) =
1
2

x2p+1

(1−2x)p+1 +
1
2

x2p+1

(1+2x)p+1
=
x2p+1

2
((1+2x)−p−1+(1−2x)−p−1),

implying

f (n) =
1
2

((−p−1
2n−2p

)
22n−2p+

(−p−1
2n−2p

)
22n−2p

)
,

and after simplification

f (n) =

(
2n− p
2n−2p

)
22n−2p. �

We notice that for most of the problems we didn’t make a substantial deviation from the method
and we used only a handful of identities. This method can also be used in writing computer algo-
rithms for symbolic evaluation of number of sums with binomial coefficients.

5 Problems
1. Prove that for the sequence of Fibonacci numbers we have

F0+F1+ · · ·+Fn = Fn+2+1.

2. Given a positive integer n, let A denote the number of ways in which n can be partitioned as a
sum of odd integers. Let B be the number of ways in which n can be partitioned as a sum of
different integers. Prove that A= B.

3. Find the number of permutations without fixed points of the set {1,2, . . . ,n}.
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4. Evaluate∑
k

(−1)k
(
n
3k

)
.

5. Let n ∈ N and assume that

x+2y= n has R1 solutions in N
2
0

2x+3y= n−1 has R2 solutions in N
2
0

...
nx+(n+1)y= 1 has Rn solutions in N

2
0

(n+1)x+(n+2)y= 0 has Rn+1 solutions in N
2
0

Prove that∑
k
Rk = n+1.

6. A polynomial f (x1,x2, . . . ,xn) is called a symmetric if each permutation σ ∈ Sn we have
f (xσ(1), . . . ,xσ(n)) = f (x1, . . . ,xn). We will consider several classes of symmetric polyno-
mials. The first class consists of the polynomials of the form:

σk(x1, . . . ,xn) = ∑
i1<···<ik

xi1 · · · · · xik

for 1 � k � n, σ0 = 1, and σk = 0 for k > n. Another class of symmetric polynomials are the
polynomials of the form

pk(x1, . . . ,xn) = ∑
i1+···+in=k

xi11 · · · · · xinn , where i1, · · · , in ∈ N0.

The third class consists of the polynomials of the form:

sk(x1, . . . ,xn) = xk1+ · · ·+ xkn.

Prove the following relations between the polynomials introduced above:
n

∑
r=0

(−1)rσr pn−r = 0, npn =
n

∑
r=1
sr pn−r , and nσn =

n

∑
r=1

(−1)r−1srσn−r.

7. Assume that for some n∈ N there are sequences of positive numbers a1, a2, . . . , an and b1, b2,
. . . , bn such that the sums

a1+a2, a1+a3, . . . , an−1+an
and

b1+b2, b1+b3, . . . , bn−1+bn
the same up to permutation. Prove that n is a power of two.

8. (Leo Moser, Joe Lambek, 1959.) Prove that there is a unique way to partition the set of natural
numbers in two sets A and B such that: For very non-negative integer n (including 0) the
number of ways in which n can be written as a1+a2, a1,a2 ∈ A, a1 �= a2 is at least 1 and is
equal to the number of ways in which it can be represented as b1+b2, b1,b2 ∈ B, b1 �= b2.

9. Given several (at least two, but finitely many) arithmetic progressions, if each natural number
belongs to exactly one of them, prove there are two progressions whose common differences
are equal.

10. (This problem was posed in the journal American Mathematical Monthly) Prove that in the
contemporary calendar the 13th in a month is most likely to be Friday.
Remark: The contemporary calendar has a period of 400 years. Every fourth year has 366
days except those divisible by 100 and not by 400.
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6 Solultions
1. According to the Theorem 7 the generating function of the sum of first n terms of the se-
quence (i.e. the left-hand side) is equal to F/(1− x), where F = x/(1− x− x2) (such F is the
generatring function of the Fibonacci sequence). On the right-hand side we have

F− x
x

− 1
1− x ,

and after some obvious calculation we arrive to the required identity.

2. We will first prove that the generating function of the number of odd partitions is equal to

(1+ x+ x2+ · · ·) · (1+ x3+ x6+ · · ·) · (1+ x5+ x10+ · · ·) · · · = ∏
k�1

1
1− x2k+1 .

Indeed, to each partition in which i occurs ai times corresponds exactly one term with coeffi-
cient 1 in the product. That term is equal to x1·a1+3·a3+5·a5+···.

The generating function to the number of partitions in different summands is equal to

(1+ x) · (1+ x2) · (1+ x3) · · · = ∏
k�1

(1+ xk),

because from each factor we may or may not take a power of x, which exactly correpsonds to
taking or not taking the corresponding summand of a partition. By some elementary transfor-
mations we get

∏
k�1

(1+ xk) = ∏
k�1

1− x2k
1− xk =

(1− x2)(1− x4) · · ·
(1− x)(1− x2)(1− x3)(1− x4) · · · = ∏

k�1

1
1− x2k+1

which proves the statement.

3. This example illustrates the usefullness of the exponential generating functions. This problem
is known as derangement problem or ”le Problème des Rencontres” posed by Pierre R. de
Montmort (1678-1719).

Assume that the required number is Dn and let D(x) esr↔ Dn. The number of permutations
having exactly k given fixed points is equal to Dn−k, hence the total number of permutations
with exactly k fixed points is equal to

(n
k
)
Dn−k, because we can choose k fixed points in

(n
k
)

ways. Since the total number of permutations is equal to n!, then

n!= ∑
k

(
n
k

)
Dn−k

and the Theorem 10 gives
1
1− x = exD(x)

implyingD(x) = e−x/(1−x). Since e−x is the generating function of the sequence (−1)n
n!

, we
get

Dn
n!

= 1−1+
1
2!

− 1
3!

+ · · ·+(−1)n 1
n!

,

Dn = n! ·
(
1
2!

− 1
3!

+ · · ·+(−1)n 1
n!

)
.
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4. The idea here is to consider the generating function

F(x) = ∑
k

(
n
3k

)
x3k.

The required sum is equal to f (−1). The question now is how to make binomial formula to
skip all terms except those of order 3k. We will use the following identy for the sum of roots
of unity in the complex plane

∑
εr=1

εn =

{
r, r|n
0, otherwise.

LetC(x) = (1+ x)n and let 1, ε , and ε2 be the cube roots of 1. Then we have

F(x) =
C(x)+C(εx)+C(ε2x)

3

which for x= −1 gives

F(−1) =
1
3

{(
3− i

√
3

2

)n
+

(
3+ i

√
3

2

)n}

and after simplification

∑
k

(−1)k
(
n
3k

)
= 2 ·3n/2−1 cos

(nπ
6

)

5. The number of solutions of x+2y= n in N
2
0 is the coefficient near tn in

(1+ t+ t2+ · · ·) · (1+ t2+ t4+ · · ·) =
1
1− t

1
1− t2

The reason is that each pair (x,y) that satisfies the condition of the problem increases the
coefficient near tn by 1 because it appears as a summand of the form txt2y = tx+2y. More
generally, the number of solutions of kx+(k+ 1)y= n+ 1− k is the coefficient near tn+1−k

in
1

1− tk
1

1− tk+1 , i.e. the coefficient near t
n in

xk−1

(1− tk)(1− tk+1) . Hence,
n

∑
k=1
Rk is the coef-

ficient near tn in∑
k

tk−1

(1− tk)(1− tk+1) = ∑
k

1
t− t2

(
1

1− tk+2 −
1

1− tk+1
)

=
1

(1− t)2 . Now it

is easy to see that∑
k
Rk = n+1.

6. The generating function of the symmetric polynomials σk(x1, . . . ,xn) is

Σ(t) =
∞

∑
k=0

σktk =
n

∏
i=1

(1+ txi).

The generating function of the polynomials pk(x1, . . . ,xn) is:

P(t) =
∞

∑
k=0
pktk = ∏ 1

1− txi
,

and the generating function of the polynomials sk is:

S(t) =
∞

∑
k=0
sktk−1 =

n

∑
i=1

xi
1− txi

.
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The functions Σ(t) and P(t) satisfy the following condition Σ(t)p(−t) = 1. If we calculate the
coefficient of this product near tn, n� 1 we get the relation

n

∑
r=0

(−1)rσr pn−r = 0.

Notice that

logP(t) =
n

∑
i=1
log

1
1− txi

and logΣ(t) =
n

∑
i=1
log(1+ txi).

Now we can express S(t) in terms of P(t) and Σ(t) by:

S(t) =
d
dt
logP(t) =

P′(t)
P(t)

and
S(−t) = − d

dt
logΣ(t) = −Σ′(t)

Σ(t)
.

From the first formula we get S(t)P(t) = P′(t), and from the second S(−t)Σ(t) = −Σ′(t).
Comparing the coefficients near tn+1 we get

npn =
n

∑
r=1
sr pn−r and nσn =

n

∑
r=1

(−1)r−1srσn−r.

7. Let F and G be polynomials generated by the given sequence: F(x) = xa1 +xa2 + · · ·+xan and
G(x) = xb1 + xb2 + · · ·+ xbn . Then

F2(x)−G2(x) =

(
n

∑
i=1
x2ai +2 ∑

1�i� j�n
xai+a j

)
−

(
n

∑
i=1
x2bi +2 ∑

1�i� j�n
xbi+b j

)

= F(x2)−G(x2).

Since F(1) = G(1) = n, we have that 1 is zero of the order k,(k � 1) of the polynomial
F(x)−G(x). Then we have F(x)−G(x) = (x−1)kH(x), hence

F(x)+G(x) =
F2(x)−G2(x)
F(x)−G(x)

=
F(x2)−G(x2)
F(x)−G(x)

=
(x2−1)kH(x2)
(x−1)kH(x)

= (x+1)k
H(x2)
H(x)

Now for x= 1 we have:

2n= F(1)+G(1) = (1+1)k
H(x2)
H(x)

= 2k,

implying that n= 2k−1.

8. Consider the polynomials generated by the numbers from different sets:

A(x) = ∑
a∈A
xa, B(x) = ∑

b∈B
xb.

The condition that A and B partition the whole N without intersection is equivalent to

A(x)+B(x) =
1
1− x .
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The number of ways in which some number can be represented as a1+a2, a1,a2 ∈A, a1 �= a2
has the generating function:

∑
ai,a j∈A,ai �=a j

xai+a j =
1
2
(
A2(x)−A(x2)

)
.

Now the second condition can be expressed as(
A2(x)−A(x2)

)
=

(
B2(x)−B(x2)

)
.

We further have
(A(x)−B(x))

1
1− x = A(x2)−B(x2)

or equivalently
(A(x)−B(x)) = (1− x)(A(x2)−B(x2)).

Changing x by x2,x4, . . . ,x2n−1 we get

A(x)−B(x) = (A(x2
n
)−B(x2

n
))
n−1
∏
i=0

(1− x2i),

implying

A(x)−B(x) =
∞

∏
i=0

(1− x2i).

The last product is series whose coefficients are ±1 hence A and B are uniquely determined
(since their coefficients are 1). It is not difficult to notice that positive coefficients (i.e. coef-
ficients originating from A) are precisely those corresponding to the terms xn for which n can
be represented as a sum of even numbers of 2s. This means that the binary partition of n has
an even number of 1s. The other numbers form B.
Remark: The sequence representing the parity of the number of ones in the binary representa-
tion of n is calledMorse sequence.

9. This problem is posed by Erdösz (in slightly different form), and was solved by Mirsky and
Newman after many years. This is their original proof:
Assume that k arithmetic progressionss {ai+nbi} (i= 1,2, . . . ,k) cover the entire set of pos-

itive integers. Then
za

1− zb =
∞

∑
i=0
za+ib, hence

z
1− z =

za1
1− zb1 +

za2
1− zb2 + · · ·+ zak

1− zbk .

Let |z| � 1. We will prove that the biggest number among bi can’t be unique. Assume the
contrary, that b1 is the greatest among the numbers b1,b2, . . . ,bn and set ε = e2iπ/b1 . Assume
that z approaches ε in such a way that |z| � 1. Here we can choose ε such that εb1 = 1, ε �= 1,
and εbi �= 1, 1 < i � k. All terms except the first one converge to certain number while the
first converges to ∞, which is impossible.

10. Friday the 13th corresponds to Sunday the 1st. Denote the days by numbers 1,2,3, . . . and
let ti corresponds to the day i. Hence, Jan.1st2001 is denoted by 1 (or t), Jan.4th2001 by t4
etc. Let A be the set of all days (i.e. corresponding numbers) which happen to be the first in a
month. For instance, 1 ∈ A, 2 ∈ A, etc. A= {1,32,60, . . .}. Let fA(t) = ∑n∈A tn. If we replace
t7k by 1, t7k+1 by t, t7k+2 by t2 etc. in the polynomial fA we get another polynomial – denote
it by gA(t) = ∑6i=0 aiti. Now the number ai represents how many times the day (of a week)
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denoted by i has appeared as the first in a month. Since Jan1,2001 was Monday, a1 is the
number of Mondays, a2- the number of Tuesdays, . . . , a0- the number of Sundays. We will
consider now fA modulus t7−1. The polynoimal fA(t)−gA(t) is divisible by t7−1. Since we
only want to find which of the numbers a0,a1, . . . ,a6 is the biggest, it is enough to consider
the polynomial modulus q(t) = 1+ t+ t2+ · · ·+ t6 which is a factor of t7−1. Let f1(t) be the
polynomial that represents the first days of months in 2001. Since the first day of January is
Monday, Thursday– the first day of February, ..., Saturday the first day of December, we get

f1(t) = t+ t4+ t4+1+ t2+ t5+1+ t3+ t6+ t+ t4+ t6 =

= 2+2t+ t2+ t3+3t4+ t5+2t6 ≡ 1+ t+2t4+ t6 (mod q(t)).

Since the common year has 365≡ 1 (mod 7) days, polynomials f2(t) and f3(t) corresponding
to 2002. and 2003., satisfy

f2(t) ≡ t f1(t) ≡ tg1(t)
and

f3(t) ≡ t f2(t) ≡ t2g1(t),
where the congruences are modulus q(t). Using plain counting we easily verify that f4(t) for
leap 2004 is

f4(t) = 2+2t+ t2+2t3+3t4+ t5+ t6 ≡ 1+ t+ t3+2t4 = g4(t).

We will introduce a new polynomial that will count the first days for the period 2001−2004
h1(t) = g1(t)(1+ t+ t2)+ g4(t). Also, after each common year the days are shifted by one
place, and after each leap year by 2 places, hence after the period of 4 years all days are shifted
by 5 places. In such a way we get a polynomial that counts the numbers of first days of months
between 2001 and 2100. It is:

p1(t) = h1(t)(1+ t5+ t10+ · · ·+ t115)+ t120g1(t)(1+ t+ t2+ t3).

Here we had to write the last for years in the form g1(t)(1+ t+ t2+ t3) because 2100 is not
leap, and we can’t replace it by h1(t). The period of 100 years shifts the calendar for 100 days
(common years) and additional 24 days (leap) which is congruent to 5 modulus 7. Now we
get

gA(t) ≡ p1(t)(1+ t5+ t10)+ t15h1(t)(1+ t5+ · · ·+ t120).
Similarly as before the last 100 are counted by last summands because 2400 is leap. Now we
will use that t5a+t5(a+1)+ · · ·+t5(a+6) ≡ 0. Thus 1+t5+ · · ·+t23·5≡ 1+t5+t2·5≡ 1+t3+t5
and 1+ t5+ · · ·+ t25·5 ≡ 1+ t5+ t2·5+ t4·5 ≡ 1+ t+ t3+ t5. We further have that

p1(t) ≡ h1(t)(1+ t3+ t5)+ tg1(t)(1+ t+ t2+ t3) ≡

g1(t)[(1+ t+ t2)(1+ t3+ t5)+ t(1+ t+ t2+ t3)]+g4(t)(1+ t3+ t5) ≡
g1(t)(2+2t+2t2+2t3+2t4+2t5+ t6)+g4(t)(1+ t3+ t5) ≡−g1(t)t6+g4(t)(1+ t3+ t5).

If we now put this into formula for gA(t) we get

gA(t) ≡ p1(t)(1+ t3+ t5)+ th1(t)(1+ t+ t3+ t5)
≡ −g1(t)t6(1+ t3+ t5)+g4(t)(1+ t3+ t5)2

+tg1(t)(1+ t+ t2)(1+ t+ t3+ t5)+ tg4(t)(1+ t+ t3+ t5)
≡ g1(t)(t+ t3)+g4(t)(2t+2t3+ t5+ t6)
≡ (1+ t+2t4+ t6)(t+ t3)+ (1+ t+ t3+2t4)(2t+2t3+ t5+ t6)
≡ 8+4t+7t2+5t3+5t4+7t5+4t6 ≡ 4+3t2+ t3+ t4+3t5.
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This means that the most probable day for the first in a month is Sunday (because a0 is the
biggest).
We can precisely determine the probability. If we use the fact that there are 4800 months in
a period of 400, we can easily get the Sunday is the first exactly 688 times, Monday – 684,
Tuesday – 687, Wednesday – 685, Thursday – 685, Friday – 687, and Saturday – 684.
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1 Introduction
When we are unable to solve some problem in plane geometry, it is recommended to try to do
calculus. There are several techniques for doing calculations instead of geometry. The next text is
devoted to one of them – the application of complex numbers.
The plane will be the complex plane and each point has its corresponding complex number.

Because of that points will be often denoted by lowercase letters a, b, c, d, . . . , as complex numbers.
The following formulas can be derived easily.

2 Formulas and Theorems

Theorem 1. • ab ‖ cd if and only if a−b
a −b

=
c−d
c −d

.

• a,b,c are colinear if and only if a−b
a −b

=
a− c
a − c .

• ab⊥ cd if and only if a−b
a −b

= − c−d
c −d

.

• ϕ = ∠acb (from a to b in positive direction) if and only if
c−b
|c−b| = eiϕ

c−a
|c−a| .

Theorem 2. Properties of the unit circle:
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• For a chord ab we have a−b
a −b

= −ab.

• If c belongs to the chord ab then c =
a+b− c
ab

.

• The intersection of the tangents from a and b is the point 2ab
a+b

.

• The foot of perpendicular from an arbitrary point c to the chord ab is the point p=
1
2

(

a+b+

c−abc
)

.

• The intersection of chords ab and cd is the point ab(c+d)− cd(a+b)
ab− cd .

Theorem 3. The points a,b,c,d belong to a circle if and only if

a− c
b− c :

a−d
b−d ∈ R.

Theorem 4. The triangles abc and pqr are similar and equally oriented if and only if

a− c
b− c =

p− r
q− r .

Theorem 5. The area of the triangle abc is

p=
i
4

∣

∣

∣

∣

∣

∣

a a 1
b b 1
c c 1

∣

∣

∣

∣

∣

∣

=
i
4

(

ab +bc+ ca −ab−bc− ca.
)

Theorem 6. • The point c divides the segment ab in the ratio λ �=−1 if and only if c=
a+ λb
1+ λ

.

• The point t is the centroid of the triangle abc if and only if t = a+b+ c
3

.

• For the orthocenter h and the circumcenter o of the triangle abc we have h+2o= a+b+ c.

Theorem 7. Suppose that the unit circle is inscribed in a triangle abc and that it touches the sides
bc,ca,ab, respectively at p,q,r.

• It holds a=
2qr
q+ r

,b=
2rp
r+ p

and c=
2pq
p+q

;

• For the orthocenter h of the triangle abc it holds

h=
2(p2q2+q2r2+ r2p2+ pqr(p+q+ r))

(p+q)(q+ r)(r+ p)
.

• For the excenter o of the triangle abc it holds o=
2pqr(p+q+ r)

(p+q)(q+ r)(r+ p)
.

Theorem 8. • For each triangle abc inscribed in a unit circle there are numbers u,v,w such
that a = u2,b = v2,c = w2, and −uv,−vw,−wu are the midpoints of the arcs ab,bc,ca (re-
spectively) that don’t contain c,a,b.

• For the above mentioned triangle and its incenter i we have i= −(uv+ vw+wu).
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Theorem 9. Consider the triangle� whose one vertex is 0, and the remaining two are x and y.

• If h is the orthocenter of� then h=
(xy+ xy)(x− y)

xy − xy .

• If o is the circumcenter of�, then o=
xy(x − y)
xy− xy .

3 Complex Numbers and Vectors. Rotation
This section contains the problems that use the main properties of the interpretation of complex
numbers as vectors (Theorem 6) and consequences of the last part of theorem 1. Namely, if the
point b is obtained by rotation of the point a around c for the angle ϕ (in the positive direction), then
b− c= eiϕ(a− c).
1. (Yug MO 1990, 3-4 grade) Let S be the circumcenter and H the orthocenter of �ABC. Let Q be
the point such that S bisects HQ and denote by T1, T2, and T3, respectively, the centroids of�BCQ,
�CAQ and�ABQ. Prove that

AT1 = BT2 =CT3 =
4
3
R,

where R denotes the circumradius of�ABC.
2. (BMO 1984) Let ABCD be an inscribed quadrilateral and let HA, HB, HC and HD be the orthocen-
ters of the triangles BCD,CDA, DAB, and ABC respectively. Prove that the quadrilaterals ABCD and
HAHBHCHD are congruent.
3. (Yug TST 1992) The squares BCDE ,CAFG, and ABHI are constructed outside the triangle ABC.
Let GCDQ and EBHP be parallelograms. Prove that�APQ is isosceles and rectangular.
4. (Yug MO 1993, 3-4 grade) The equilateral triangles BCB1, CDC1, and DAD1 are constructed
outside the triangle ABC. If P and Q are respectively the midpoints of B1C1 andC1D1 and if R is the
midpoint of AB, prove that�PQR is isosceles.
5. In the plane of the triangle A1A2A3 the point P0 is given. Denote with As = As−3, for every natural
number s> 3. The sequence of points P0, P1, P2, . . . is constructed in such a way that the point Pk+1
is obtained by the rotation of the point Pk for an angle 120o in the clockwise direction around the
point Ak+1. Prove that if P1986 = P0, then the triangle A1A2A3 has to be isosceles.
6. (IMO Shortlist 1992) Let ABCD be a convex quadrilateral for which AC = BD. Equilateral
triangles are constructed on the sides of the quadrilateral. Let O1, O2, O3, and O4 be the centers of
the triangles constructed on AB, BC, CD, and DA respectively. Prove that the lines O1O3 and O2O4
are perpendicular.

4 The Distance. Regular Polygons
In this section we will use the following basic relation for complex numbers: |a|2 = aa . Similarly,
for calculating the sums of distances it is of great advantage if points are colinear or on mutually
parallel lines. Hence it is often very useful to use rotations that will move some points in nice
positions.
Now we will consider the regular polygons. It is well-known that the equation xn = 1 has exactly

n solutions in complex numbers and they are of the form xk = ei
2kπ
n , for 0≤ k≤ n−1. Now we have

that x0 = 1 and xk = εk, for 1≤ k ≤ n−1, where x1 = ε .
Let’s look at the following example for the illustration:

Problem 1. Let A0A1A2A3A4A5A6 be a regular 7-gon. Prove that

1
A0A1

=
1
A0A2

+
1

A0A3
.
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Solution. As mentioned above let’s take ak = εk, for 0 ≤ k ≤ 6, where ε = ei
2π
7 . Further, by

rotation around a0 = 1 for the angle ε , i.e. ω = ei
2π
14 , the points a1 and a2 are mapped to a′1 and

a′2 respectively. These two points are collinear with a3. Now it is enough to prove that
1

a′1−1
=

1
a′2−1

+
1

a3−1
. Since ε = ω2, a′1 = ε(a1− 1)+ 1, and a′2 = ω(a2− 1)+ 1 it is enough to prove

that
1

ω2(ω2−1) =
1

ω(ω4−1) +
1

ω6−1 .

After rearranging we get ω6+ ω4+ ω2+ 1 = ω5+ ω3+ ω . From ω5 = −ω12, ω3 = −ω10, and
ω =−ω8 (which can be easily seen from the unit circle), the equality follows from 0= ω12+ω10+

ω8+ ω6+ ω4+ ω2+1= ε6+ ε5+ ε4+ ε3+ ε2+ ε +1=
ε7−1
ε −1 = 0. �

7. Let A0A1 . . .A14 be a regular 15-gon. Prove that

1
A0A1

=
1

A0A2
+

1
A0A4

+
1
A0A7

.

8. Let A0A1 . . .An−1 be a regular n-gon inscribed in a circle with radius r. Prove that for every point
P of the circle and every natural number m< n we have

n−1
∑
k=0
PA2mk =

(

2m
m

)

nr2m.

9. (SMN TST 2003) Let M and N be two different points in the plane of the triangle ABC such that

AM : BM :CM = AN : BN :CN.

Prove that the lineMN contains the circumcenter of�ABC.
10. Let P be an arbitrary point on the shorter arc A0An−1 of the circle circumscribed about the regular
polygon A0A1 . . .An−1. Let h1,h2, . . . ,hn be the distances of P from the lines that contain the edges
A0A1, A1A2, . . ., An−1A0 respectively. Prove that

1
h1

+
1
h2

+ · · ·+ 1
hn−1

=
1
hn

.

5 Polygons Inscribed in Circle
In the problems where the polygon is inscribed in the circle, it is often useful to assume that the unit
circle is the circumcircle of the polygon. In theorem 2 we can see lot of advantages of the unit circle
(especially the first statement) and in practice we will see that lot of the problems can be solved
using this method. In particular, we know that each triangle is inscribed in the circle and in many
problems from the geometry of triangle we can make use of complex numbers. The only problem in
this task is finding the circumcenter. For that you should take a look in the next two sections.
11. The quadrilateral ABCD is inscribed in the circle with diameter AC. The lines AB and CD
intersect at M and the tangets to the circle at B andC interset at N. Prove thatMN ⊥ AC.
12. (IMO Shorlist 1996) Let H be the orthocenter of the triangle�ABC and P an arbitrary point of
its circumcircle. Let E the foot of perpendicular BH and let PAQB and PARC be parallelograms. If
AQ and HR intersect in X prove that EX‖AP.
13. Given a cyclic quadrilateral ABCD, denote by P and Q the points symmetric toC with respect to
AB and AD respectively. Prove that the line PQ passes through the orthocenter of�ABD.
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14. (IMO Shortlist 1998) Let ABC be a triangle, H its orthocenter, O its incenter, and R the cir-
cumradius. Let D be the point symmetric to A with respect to BC, E the point symmetric to B with
respect toCA, and F the point symmetric to C with respect to AB. Prove that the points D, E , and F
are collinear if and only if OH = 2R.

15. (Rehearsal Competition in MG 2004) Given a triangle ABC, let the tangent at A to the circum-
scribed circle intersect the midsegment parallel to BC at the point A1. Similarly we define the points
B1 andC1. Prove that the points A1,B1,C1 lie on a line which is parallel to the Euler line of�ABC.
16. (MOP 1995) Let AA1 and BB1 be the altitudes of�ABC and let AB �= AC. If M is the midpoint
of BC, H the orthocenter of�ABC, and D the intersection of BC and B1C1, prove that DH ⊥ AM.
17. (IMO Shortlist 1996) Let ABC be an acute-angled triangle such that BC > CA. Let O be the
circumcircle, H the orthocenter, and F the foot of perpendicularCH. If the perpendicular from F to
OF intersectsCA at P, prove that ∠FHP= ∠BAC.

18. (Romania 2005) Let A0A1A2A3A4A5 be a convex hexagon inscribed in a circle. Let A′0,A′2,A′4 be
the points on that circle such that

A0A′0 ‖ A2A4, A2A′2 ‖ A4A0 A4A′4 ‖ A2A0.

Suppose that the lines A′0A3 and A2A4 intersect at A
′
3, the lines A

′
2A5 and A0A4 intersect at A

′
5, and

the lines A′4A1 and A0A2 intersect at A′1.
If the lines A0A3, A1A4, and A2A5 are concurrent, prove that the lines A0A′3,A4A′1 and A2A′5 are
concurrent as well.

19. (Simson’s line) If A, B,C are points on a circle, then the feet of perpendiculars from an arbitrary
point D of that circle to the sides of ABC are collinear.

20. Let A, B, C, D be four points on a circle. Prove that the intersection of the Simsons line
corresponding to A with respect to the triangle BCD and the Simsons line corresponding to B w.r.t.
�ACD belongs to the line passing throughC and the orthocenter of�ABD.
21. Denote by l(S;PQR) the Simsons line corresponding to the point S with respect to the triangle
PQR. If the points A,B,C,D belong to a circle, prove that the lines l(A;BCD), l(B;CDA), l(C,DAB),
and l(D,ABC) are concurrent.

22. (Taiwan 2002) Let A, B, and C be fixed points in the plane, and D the mobile point of the cir-
cumcircle of�ABC. Let IA denote the Simsons line of the point A with respect to�BCD. Similarly
we define IB, IC, and ID. Find the locus of the points of intersection of the lines IA, IB, IC, and ID
when D moves along the circle.

23. (BMO 2003) Given a triangle ABC, assume that AB �= AC. Let D be the intersection of the
tangent to the circumcircle of �ABC at A with the line BC. Let E and F be the points on the
bisectors of the segments AB and AC respectively such that BE and CF are perpendicular to BC.
Prove that the points D, E, and F lie on a line.

24. (Pascal’s Theorem) If the hexagon ABCDEF can be inscribed in a circle, prove that the points
AB∩DE , BC∩EF , andCD∩FA are colinear.
25. (Brokard’s Theorem) Let ABCD be an inscribed quadrilateral. The lines AB and CD intersect
at E , the lines AD and BC intersect in F , and the lines AC and BD intersect in G. Prove that O is the
orthocenter of the triangle EFG.

26. (Iran 2005) Let ABC be an equilateral triangle such that AB = AC. Let P be the point on the
extention of the side BC and let X and Y be the points on AB and AC such that

PX ‖ AC, PY ‖ AB.

Let T be the midpoint of the arc BC. Prove that PT ⊥ XY .
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27. Let ABCD be an inscribed quadrilateral and let K, L, M, and N be the midpoints of AB, BC,
CA, and DA respectively. Prove that the orthocenters of �AKN, �BKL, �CLM, �DMN form a
parallelogram.

6 Polygons Circumscribed Around Circle
Similarly as in the previous chapter, here we will assume that the unit circle is the one inscribed
in the given polygon. Again we will make a use of theorem 2 and especially its third part. In the
case of triangle we use also the formulas from the theorem 7. Notice that in this case we know
both the incenter and circumcenter which was not the case in the previous section. Also, notice that
the formulas from the theorem 7 are quite complicated, so it is highly recommended to have the
circumcircle for as the unit circle whenever possible.

28. The circle with the center O is inscribed in the triangle ABC and it touches the sides AB, BC,CA
in M, K, E respectively. Denote by P the intersection ofMK and AC. Prove that OP⊥ BE .
29. The circle with center O is inscribed in a quadrilateral ABCD and touches the sides AB, BC,CD,
and DA respectively in K, L, M, and N. The lines KL andMN intersect at S. Prove that OS⊥ BD.
30. (BMO 2005) Let ABC be an acute-angled triangle which incircle touches the sides AB and AC
in D and E respectively. Let X and Y be the intersection points of the bisectors of the angles ∠ACB
and ∠ABC with the line DE . Let Z be the midpoint of BC. Prove that the triangle XYZ is isosceles
if and only if ∠A= 60◦.

31. (Newtons Theorem) Given an circumscribed quadrilateral ABCD, letM and N be the midpoints
of the diagonals AC and BD. If S is the incenter, prove that M, N, and S are colinear.

32. Let ABCD be a quadrilateral whose incircle touches the sides AB, BC, CD, and DA at the points
M, N, P, and Q. Prove that the lines AC, BD,MP, and NQ are concurrent.

33. (Iran 1995) The incircle of �ABC touches the sides BC, CA, and AB respectively in D, E , and
F . X , Y , and Z are the midpoints of EF , FD, and DE respectively. Prove that the incenter of�ABC
belongs to the line connecting the circumcenters of�XYZ and�ABC.
34. Assume that the circle with center I touches the sides BC, CA, and AB of �ABC in the points
D,E,F , respectively. Assume that the lines AI and EF intersect at K, the lines ED and KC at L, and
the lines DF and KB at M. Prove that LM is parallel to BC.

35. (25. Tournament of Towns) Given a triangle ABC, denote by H its orthocenter, I the incenter,
O its circumcenter, and K the point of tangency of BC and the incircle. If the lines IO and BC are
parallel, prove that AO and HK are parallel.

36. (IMO 2000) Let AH1, BH2, and CH3 be the altitudes of the acute-angled triangle ABC. The
incircle of ABC touches the sides BC, CA, AB respectively in T1, T2, and T3. Let l1, l2, and l3 be the
lines symmetric to H2H3, H3H1, H1H2 with respect to T2T3, T3T1, and T1T2 respectively. Prove that
the lines l1, l2, l3 determine a triagnle whose vertices belong to the incircle of ABC.

7 The Midpoint of Arc

We often encounter problems in which some point is defined to be the midpoint of an arc. One of the
difficulties in using complex numbers is distinguishing the arcs of the cirle. Namely, if we define the
midpoint of an arc to be the intersection of the bisector of the corresponding chord with the circle,
we are getting two solutions. Such problems can be relatively easy solved using the first part of
the theorem 8. Moreover the second part of the theorem 8 gives an alternative way for solving the
problems with incircles and circumcircles. Notice that the coordinates of the important points are
given with the equations that are much simpler than those in the previous section. However we have
a problem when calculating the points d,e, f of tangency of the incircle with the sides (calculate
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them!), so in this case we use the methods of the previous section. In the case of the non-triangular
polygon we also prefer the previous section.
37. (Kvant M769) Let L be the incenter of the triangle ABC and let the lines AL, BL, and CL
intersect the circumcircle of�ABC at A1, B1, and C1 respectively. Let R be the circumradius and r
the inradius. Prove that:

(a)
LA1 ·LC1
LB

= R; (b)
LA ·LB
LC1

= 2r; (c)
S(ABC)

S(A1B1C1)
=
2r
R

.

38. (Kvant M860) Let O and R be respectively the center and radius of the circumcircle of the
triangle ABC and let Z and r be respectively the incenter and inradius of �ABC. Denote by K the
centroid of the triangle formed by the points of tangency of the incircle and the sides. Prove that Z
belongs to the segment OK and that OZ : ZK = 3R/r.
39. Let P be the intersection of the diagonals AC and BD of the convex quadrilateral ABCD for
which AB= AC= BD. Let O and I be the circumcenter and incenter of the triangle ABP. Prove that
if O �= I then OI ⊥CD.
40. Let I be the incenter of the triangle ABC for which AB �= AC. Let O1 be the point symmetric to
the circumcenter of�ABC with respect to BC. Prove that the points A, I,O1 are colinear if and only
if ∠A= 60◦.
41. Given a triangle ABC, let A1, B1, andC1 be the midpoints of BC, CA, and AB respecctively. Let
P, Q, and R be the points of tangency of the incircle k with the sides BC,CA, and AB. Let P1, Q1, and
R1 be the midpoints of the arcs QR, RP, and PQ on which the points P, Q, and R divide the circle
k, and let P2, Q2, and R2 be the midpoints of arcs QPR, RQP, and PRQ respectively. Prove that the
lines A1P1, B1Q1, andC1R1 are concurrent, as well as the lines A1P1, B1Q2, andC1R2.

8 Important Points. Quadrilaterals
In the last three sections the points that we’ve taken as initial, i.e. those with known coordinates
have been ”equally improtant” i.e. all of them had the same properties (they’ve been either the
points of the same circle, or intersections of the tangents of the same circle, etc.). However, there
are numerous problems where it is possible to distinguish one point from the others based on its
influence to the other points. That point will be regarded as the origin. This is particularly useful
in the case of quadrilaterals (that can’t be inscribed or circumscribed around the circle) – in that
case the intersection of the diagonals can be a good choice for the origin. We will make use of the
formulas from the theorem 9.
42. The squares ABB′B′′, ACC′C′′, BCXY are consctructed in the exterior of the triangle ABC. Let P
be the center of the square BCXY . Prove that the lines CB′′, BC′′, AP intersect in a point.
43. Let O be the intersection of diagonals of the quadrilateral ABCD andM, N the midpoints of the
side AB and CD respectively. Prove that if OM ⊥CD and ON ⊥ AB then the quadrilateral ABCD is
cyclic.
44. Let F be the point on the base AB of the trapezoid ABCD such that DF = CF . Let E be the
intersection of AC and BD and O1 and O2 the circumcenters of �ADF and �FBC respectively.
Prove that FE ⊥ O1O2.
45. (IMO 2005) Let ABCD be a convex quadrilateral whose sides BC and AD are of equal length but
not parallel. Let E and F be interior points of the sides BC and AD respectively such that BE = DF .
The lines AC and BD intersect at P, the lines BD and EF intersect at Q, and the lines EF and AC
intersect at R. Consider all such triangles PQR as E and F vary. Show that the circumcircles of these
triangles have a common point other than P.
46. Assume that the diagonals of ABCD intersect in O. Let T1 and T2 be the centroids of the triangles
AOD and BOC, and H1 and H2 orthocenters of�AOB and�COD. Prove that T1T2 ⊥ H1H2.
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9 Non-unique Intersections and Viete’s formulas
The point of intersection of two lines can be determined from the system of two equations each of
which corresponds to the condition that a point correspond to a line. However this method can lead
us into some difficulties. As we mentioned before standard methods can lead to non-unique points.
For example, if we want to determine the intersection of two circles we will get a quadratic equations.
That is not surprising at all since the two circles have, in general, two intersection points. Also, in
many of the problems we don’t need both of these points, just the direction of the line determined
by them. Similarly, we may already know one of the points. In both cases it is more convenient to
use Vieta’s formulas and get the sums and products of these points. Thus we can avoid ”taking the
square root of a complex number” which is very suspicious operation by itself, and usually requires
some knowledge of complex analysis.
Let us make a remark: If we need explicitly coordinates of one of the intersection points of two

circles, and we don’t know the other, the only way to solve this problem using complex numbers is
to set the given point to be one of the initial points.

47. Suppose that the tangents to the circle Γ at A and B intersect at C. The circle Γ1 which passes
throughC and touches AB at B intersects the circle Γ at the point M. Prove that the line AM bisects
the segment BC.

48. (Republic Competition 2004, 3rd grade) Given a circle k with the diameter AB, let P be an
arbitrary point of the circle different from A and B. The projections of the point P to AB is Q. The
circle with the center P and radius PQ intersects k at C and D. Let E be the intersection of CD
and PQ. Let F be the midpoint of AQ, and G the foot of perpendicular from F to CD. Prove that
EP= EQ= EG and that A, G, and P are colinear.

49. (China 1996) Let H be the orthocenter of the triangle ABC. The tangents from A to the circle
with the diameter BC intersect the circle at the points P and Q. Prove that the points P, Q, and H are
colinear.

50. Let P be the point on the extension of the diagonal AC of the rectangle ABCD over the point C
such that ∠BPD= ∠CBP. Determine the ratio PB : PC.

51. (IMO 2004) In the convex quadrilateral ABCD the diagonal BD is not the bisector of any of the
angles ABC andCDA. Let P be the point in the interior of ABCD such that

∠PBC= ∠DBA and∠PDC = ∠BDA.

Prove that the quadrilateral ABCD is cyclic if and only if AP=CP.

10 Different Problems – Different Methods
In this section you will find the problems that are not closely related to some of the previous chapters,
as well as the problems that are related to more than one of the chapters. The useful advice is to
carefully think of possible initial points, the origin, and the unit circle. As you will see, the main
problem with solving these problems is the time. Thus if you are in competition and you want to
use complex numbers it is very important for you to estimate the time you will spend. Having this
in mind, it is very important to learn complex numbers as early as possible.
You will see several problems that use theorems 3, 4, and 5.

52. Given four circles k1, k2, k3, k4, assume that k1 ∩ k2 = {A1,B1}, k2 ∩ k3 = {A2,B2}, k3 ∩ k4 =
{A3,B3}, k4∩ k1 = {A4,B4}. If the points A1, A2, A3, A4 lie on a circle or on a line, prove that the
points B1, B2, B3, B4 lie on a circle or on a line.

53. Suppose that ABCD is a parallelogram. The similar and equally oliented trianglesCD andCB are
constructed outside this parallelogram. Prove that the triangle FAE is similar and equally oriented
with the first two.
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54. Three triangles KPQ, QLP, and PQM are constructed on the same side of the segment PQ in
such a way that∠QPM= ∠PQL= α, ∠PQM= ∠QPK = β , and∠PQK = ∠QPL= γ . If α < β < γ
and α + β + γ = 180◦, prove that the triangle KLM is similar to the first three.

55. ∗(Iran, 2005) Let n be a prime number and H1 a convex n-gon. The polygons H2, . . . ,Hn are de-
fined recurrently: the vertices of the polygonHk+1 are obtained from the vertices of Hk by symmetry
through k-th neighbour (in the positive direction). Prove that H1 and Hn are similar.
56. Prove that the area of the triangles whose vertices are feet of perpendiculars from an arbitrary
vertex of the cyclic pentagon to its edges doesn’t depend on the choice of the vertex.

57. The points A1, B1, C1 are chosen inside the triangle ABC to belong to the altitudes from A, B, C
respectively. If

S(ABC1)+S(BCA1)+S(CAB1) = S(ABC),

prove that the quadrilateral A1B1C1H is cyclic.

58. (IMO Shortlist 1997) The feet of perpendiculars from the vertices A, B, andC of the triangle ABC
are D, E, end F respectively. The line throughD parallel to EF intersects AC and AB respectively in
Q and R. The line EF intersects BC in P. Prove that the circumcircle of the triangle PQR contains
the midpoint of BC.

59. (BMO 2004) Let O be a point in the interior of the acute-angled triangle ABC. The circles
through O whose centers are the midpoints of the edges of �ABC mutually intersect at K, L, and
M, (different from O). Prove that O is the incenter of the triangle KLM if and only if O is the
circumcenter of the triangle ABC.

60. Two circles k1 and k2 are given in the plane. Let A be their common point. Two mobile points,
M1 andM2 move along the circles with the constant speeds. They pass through A always at the same
time. Prove that there is a fixed point P that is always equidistant from the pointsM1 andM2.

61. (Yug TST 2004) Given the square ABCD, let γ be i circle with diameter AB. Let P be an
arbitrary point on CD, and let M and N be intersections of the lines AP and BP with γ that are
different from A and B. Let Q be the point of intersection of the lines DM andCN. Prove that Q ∈ γ
and AQ :QB= DP : PC.

62. (IMO Shortlist 1995) Given the triangle ABC, the circle passing through B and C intersect
the sides AB and AC again in C′ and B′ respectively. Prove that the lines BB′, CC′, and HH ′ are
concurrent, where H and H ′ orthocenters of the triangles ABC and A′B′C′ respectively.

63. (IMO Shortlist 1998) Let M and N be interior points of the triangle ABC such that ∠MAB =
∠NAC and ∠MBA= ∠NBC. Prove that

AM ·AN
AB ·AC +

BM ·BN
BA ·BC +

CM ·CN
CA ·CB = 1.

64. (IMO Shortlist 1998) Let ABCDEF be a convex hexagon such that ∠B+∠D+∠F = 360◦ and
AB ·CD ·EF = BC ·DE ·FA. Prove that

BC ·AE ·FD=CA ·EF ·DB.

65. (IMO Shortlist 1998) Let ABC be a triangle such that ∠A= 90◦ and ∠B < ∠C. The tangent at
A to its circumcircle ω intersect the line BC at D. Let E be the reflection of A with respect to BC, X
the foot of the perpendicular from A to BE , and Y the midpoint of AX . If the line BY intersects ω in
Z, prove that the line BD tangents the circumcircle of�ADZ.
Hint: Use some inversion first...

66. (Rehearsal Competition in MG 1997, 3-4 grade) Given a triangle ABC, the points A1, B1 andC1
are located on its edges BC, CA, and AB respectively. Suppose that �ABC ∼ �A1B1C1. If either
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the orthocenters or the incenters of �ABC and �A1B1C1 coincide prove that the triangle ABC is
equilateral.

67. (Ptolomy’s inequality) Prove that for every convex quadrilateral ABCD the following inequality
holds

AB ·CD+BC ·AD≥ AC ·BD.

68. (China 1998) Find the locus of all points D such that

DA ·DB ·AB+DB ·DC ·BC+DC ·DA ·CA= AB ·BC ·CA.

11 Disadvantages of the Complex Number Method
The bigest difficulties in the use of the method of complex numbers can be encounteredwhen dealing
with the intersection of the lines (as we can see from the fifth part of the theorem 2, although it dealt
with the chords of the circle). Also, the difficulties may arrise when we have more than one circle in
the problem. Hence you should avoid using the comples numbers in problems when there are lot of
lines in general position without some special circle, or when there are more then two circles. Also,
the things can get very complicated if we have only two circles in general position, and only in the
rare cases you are advised to use complex numbers in such situations. The problems when some of
the conditions is the equlity with sums of distances between non-colinear points can be very difficult
and pretty-much unsolvable with this method.
Of course, these are only the obvious situations when you can’t count on help of complex num-

bers. There are numerous innocent-looking problems where the calculation can give us increadible
difficulties.

12 Hints and Solutions
Before the solutions, here are some remarks:

• In all the problems it is assumed that the lower-case letters denote complex numbers corre-
sponding to the points denoted by capital letters (sometimes there is an exception when the
unit circle is the incircle of the triangle and its center is denoted by o).

• Some abbreviations are used for addressing the theorems. For example T1.3 denotes the third
part of the theorem 1.

• The solutions are quite useless if you don’t try to solve the problem by yourself.

• Obvious derivations and algebraic manipulations are skipped. All expressions that are some-
how ”equally” related to both a and b are probably divisible by a−b or a+b.

• To make the things simpler, many conjugations are skipped. However, these are very straight-
forward, since most of the numbers are on the unit circle and they satisfy a =

1
a
.

• If you still doesn’t believe in the power of complex numbers, you are more than welcome to
try these problems with other methods– but don’t hope to solve all of them. For example,
try the problem 41. Sometimes, complex numbers can give you shorter solution even when
comparing to the elementar solution.

• The author has tried to make these solutions available in relatively short time, hence some
mistakes are possible. For all mistakes you’ve noticed and for other solutions (with complex
numbers), please write to me to the above e-mail address.
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1. Assume that the circumcircle of the triangle abc is the unit circle, i.e. s= 0 and |a|= |b|= |c|= 1.
According to T6.3 we have h= a+b+c, and according to T6.1 we conclude that h+q= 2s= 0, i.e.

q = −a− b− c. Using T6.2 we get t1 =
b+ c+q
3

= −a
3
and similarly t2 = −b

3
and t3 = − c

3
. We

now have |a− t1|=
∣

∣

∣
a+

a
3

∣

∣

∣
=

∣

∣

∣

∣

4a
3

∣

∣

∣

∣

=
4
3
and similarly |b− t2|= |c− t3| =

4
3
. The proof is complete.

We have assumed that R= 1, but this is no loss of generality.

2. For the unit circle we will take the circumcircle of the quadrilateral abcd. According to T6.3 we
have ha = b+ c+d, hb = c+d+a, hc = d+a+b, and hd = a+b+ c. In order to prove that abcd
and hahbhchd are congruent it is enough to establish |x−y|= |hx−hy|, for all x,y ∈ {a,b,c,d}. This
is easy to verify.

3. Notice that the point h ca be obtained by the rotation of the point a around b for the angle
π
2
in the

positive direction. Since ei π2 = i, using T1.4 we get (a−b)i= a−h, i.e. h= (1− i)a+ ib. Similarly
we get d = (1− i)b+ ic and g= (1− i)c+ ia. Since BCDE is a square, it is a parallelogram as well,
hence the midpoints of ce and bd coincide, hence by T6.1 we have d+b= e+c, or e= (1+ i)b− ic.
Similarly g = (1+ i)c− ia. The quadrilaterals beph and cgqd are parallelograms implying that
p+b= e+h and c+q= g+d, or

p= ia+b− ic, q= −ia+ ib+ c.

In order to finish the proof it is enough to show that q ca be obtained by the rotation of p around a
by an angle

π
2
, which is by T1.4 equivalent to

(p−a)i= p−b.
The last identity is easy to verify.

4. The points b1, c1, d1, are obtained by rotation of b, c, d around c, d, and a for the angle
π
3
in the

positive direction. If we denote eiπ/3 = ε using T1.4 we get

(b− c)ε = b1− c, (c−d)ε = c1−d, (d−a)ε = d1−a.
Since p is the midpoint of b1c1 T6.1 gives

p =
b1+ c1
2

=
εb+ c+(1− ε)d

2
.

Similarly we get q =
εc+d+(1− ε)a

2
. Using T6.1 again we get r =

a+b
2
. It is enough to prove

that q can be obtained by the rotation of p around r for the angle
π
3
, in the positive direction. The

last is (by T1.4) equivalent to
(p− r)ε = q− r,

which follows from

p− r=
−a+(ε−1)b+ c+(1− ε)

2
, q− r= −εa−b+ εc+d

2
,

and ε2− ε +1= 0 (since 0= ε3+1= (ε +1)(ε2− ε +1)).

5. Let ε = ei
2π
3 . According to T1.4 we have pk+1−ak+1 = (pk−ak+1)ε. Hence

pk+1 = ε pk+(1− ε)ak+1 = ε(ε pk−1+(1− ε)ak)+ (1− ε)ak+1 = . . .

= εk+1p0+(1− ε)
k+1

∑
i=1

εk+1−iai.
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Now we have p1996 = p0+665(1−ε)(ε2a1+εa2+a3), since ε3 = 1. That means p1996 = p0 if and
only if ε2a1+ εa2+a3 = 0. Using that a1 = 0 we conclude a3 = −εa2, and it is clear that a2 can be
obtained by the rotation of a3 around 0= a1 for the angle

π
3
in the positive direction.

6. Since the point a is obtained by the rotation of b around o1 for the angle
2π
3

= ε in the positive

direction, T1.4 implies (o1−b)ε = o1−a, i.e. o1 =
a−bε
1− ε

. Analogously

o2 =
b− cε
1− ε

, o3 =
c−dε
1− ε

, o4 =
d−aε
1− ε

.

Since o1o3 ⊥ o2o4 is equivalent to
o1−o3
o1 −o3

= − o2−o4
o2 −o4

, it is enouogh to prove that

a− c− (b−d)ε
a− c− (b−d)ε

= − b−d− (c−a)ε
b−d − (c−a)ε

,

i.e. that (a− c)b−d − (b− d)b−d ε + (a− c)a− cε − (b− d)a− cεε = −a− c(b− d) + (b−
d)b−d ε − (a− c)a− cε + (a− c)b−d εε . The last follows from ε =

1
ε
and |a− c|2 = (a−

c)a− c = |b−d|2 = (b−d)b−d .

7. We can assume that ak = εk for 0≤ k ≤ 12, where ε = ei
2π
15 . By rotation of the points a1, a2, and

a4 around a0 = 1 for the angles ω6, ω5, and ω3 (here ω = eiπ/15), we get the points a′1, a′2, and a′4,
such that takve da su a0,a7,a′1,a′2,a′4 kolinearne. Sada je dovoljno dokazati da je

1
a′1−1

=
1

a′2−1
+

1
a′4−1

+
1

a7−1
.

From T1.4 we have a′1−a0 = (a1−a0)ω6,a′2−a0 = (a2−a0)ω5 and a′4−a0 = (a4−a0)ω3, as well
as ε = ω2 and ω30 = 1. We get

1
ω6(ω2−1) =

1
ω5(ω4−1) +

1
ω3(ω8−1) −

ω14

ω16−1 .

Taking the common denominator and cancelling with ω2−1 we see that it is enough to prove that

ω8+ ω6+ ω4+ ω2+1= ω(ω12+ ω8+ ω4+1)+ ω3(ω8+1)−ω20.

Since ω15 = −1= −ω30, we have that ω15−k = −ω30−k. The required statement follows from 0=

ω28+ω26+ω24+ω22+ω20+ω18+ω16+ω14+ω12+ω10+ω8+ω6+ω4+ω2+1= ω30−1
ω2−1 = 0.

8. [Obtained from Uroš Rajković] Take the complex plane in which the center of the polygon is the
origin and let z= ei

π
k . Now the coordinate of Ak in the complex plane is z2k. Let p (|p| = 1) be the

coordinate of P. Denote the left-hand side of the equality by S. We need to prove that S=

(

2m
m

)

·n.
We have that

S=
n−1
∑
k=0
PA2mk =

n−1
∑
k=0

∣

∣

∣z2k− p
∣

∣

∣

2m

Notice that the arguments of the complex numbers (z2k− p) · z−k (where k ∈ {0, 1, 2, . . . ,n}) are
equal to the argument of the complex number (1− p), hence

(z2k− p) · z−k
1− p
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is a positive real number. Since |z−k| = 1 we get:

S =
n−1
∑
k=0

|z2k− p |2m = |1− p |2m ·
n−1
∑
k=0

(

z2k− p
1− p

)2m

= |1− p |2m ·

n−1
∑
k=0

(z2k− p)2m

(1− p)2m .

Since S is a positive real number we have:

S=

∣

∣

∣

∣

∣

n−1
∑
k=0

(z2k− p)2m

∣

∣

∣

∣

∣

.

Now from the binomial formula we have:

S =

∣

∣

∣

∣

∣

n−1
∑
k=0

[

2m

∑
i=0

(

2m
i

)

· z2ki · (−p)2m−i
]

· z−2mk
∣

∣

∣

∣

∣

.

After some algebra we get:

S=

∣

∣

∣

∣

∣

n−1
∑
k=0

2m

∑
i=0

(

2m
i

)

· z2k(i−m) · (−p)2m−i
∣

∣

∣

∣

∣

,

or, equivalently

S =

∣

∣

∣

∣

∣

2m

∑
i=0

(

2m
i

)

· (−p)2m−i ·
n−1
∑
k=0
z2k(i−m)

∣

∣

∣

∣

∣

.

Since for i �=m we have:
n−1
∑
k=0
z2k(i−m) =

z2n(i−m) −1
z2(i−m)−1 ,

for z2n(i−m)−1= 0 and z2(i−m)−1 �= 0, we have
n−1
∑
k=0
z2k(i−m) = 0.

For i= m we have:
n−1
∑
k=0
z2k(i−m) =

n−1
∑
k=0
1= n.

From this we conclude:

S =

∣

∣

∣

∣

(

2m
m

)

· (−p)m ·n
∣

∣

∣

∣

=

(

2m
m

)

·n · |(−p)m| .

Using |p | = 1 we get
S =

(

2m
m

)

·n

and that is what we wanted to prove.

9. Choose the circumcircle of the triangle abc to be the unit circle. Then o= 0 and a =
1
a
. The first

of the given relations can be written as

1=
|a−m||b−n|
|a−n||b−m| ⇒ 1=

|a−m|2|b−n|2
|a−n|2|b−m|2 =

(a−m)(a −m)(a−n)(a −n)
(a−n)(a−n)(b−m)(b −m)
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After some simple algebra we get (a−m)(a −m)(b− n)(b − n) = (1− m
a
− am +mm)(1− n

b
−

bn + nn) = 1− m
a
− am +mm − n

b
+
mn
ab

+
amn
b

− mmn
b

− bn +
bmn
a

+ abmn − bmmn + nn −
mnn
a

−amnn +mmnn . The value of the expression (a−n)(a −n)(b−m)(b−m) we can get from
the prevoius one replacing every a with b and vice versa. The initial equality now becomes:

1− m
a
−am+mm − n

b
+
mn
ab

+
amn
b

− mmn
b

−bn +

bmn
a

+abmn −bmmn +nn − mnn
a

−amnn +mmnn

= 1− m
b
−bm+mm − n

a
+
mn
ab

+
bmn
a

− mmn
a

−an +
amn
b

+

abmn −ammn +nn − mnn
b

−bmnn +mmnn .

Subtracting and taking a−b out gives

m
ab

−m− n
ab

+
(a+b)mn

ab
− mmn

ab
+n − (a+b)mn

ab
+mmn +

mnn
ab

−mnn = 0.

Since AM/CM = AN/CM holds as well we can get the expression analogous to the above when
every b is exchanged with c. Subtracting this expression from the previous and taking b− c out we
get

− m
abc

+
n
abc

− mn
bc

+
mmn
abc

+
mn
bc

− mnn
abc

= 0.

Writing the same expression with ac instead of bc (this can be obtained from the initial conditions
because of the symmetry), subtracting, and simplifying yieldsmn−nm = 0. Now we have

m−o
m −o =

n−o
n −o , and by T1.2 the points m,n,o are colinear.

10. [Obtained from Uroš Rajković] First we will prove that for the points p, a, and b of the unit
circle the distance from p to the line ab is equal to:

1
2
|(a− p)(b− p)|.

Denote by q the foot of perpendicular from p to ab and use T2.4 to get:

q=
1
2

(

p+a+b− ab
p

)

.

Now the required distance is equal to:

|q− p |= 1
2

∣

∣

∣

∣

−p+a+b− ab
p

∣

∣

∣

∣

.

Since |p | = 1 we can multiply the expression on the right by −p which gives us:
∣

∣

∣

∣

1
2
(p2− (a+b)p+ab)

∣

∣

∣

∣

.

Now it is easy to see that the required distance is indeed equal to:

1
2
|(a− p)(b− p)|.
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If we denote z= ei
2π
2n , the coordinate of Ak is z2k. Now we have:

2 ·hk = |(z2k− p)(z2k−2− p)|.

The vector (z2k− p) · z−k is colinear with 1− p, nece

(z2k− p) · z−k
1− p

is a positive real number. Hence for k ∈ {1,2, · · · ,n−1} it holds:

hk =
(z2k− p) · (z2k−2− p) · z−(2k−1)

2 · (1− p)2 · |1− p|2,

since |z| = 1. We also have:

hn =
(1− p) · (z2n−2− p) · z−(n−1)

2 · (1− p)2 · |1− p|2.

We need to prove that:

n−1
∑
k=1

1
(z2k− p) · (z2k−2− p) · z−(2k−1)

2 · (1− p)2 · |1− p|2
=

1
(1− p) · (z2n−2− p) · z−(n−1)

2 · (1− p)2 · |1− p|2
.

After cancelling and multiplying by z we get:

n−1
∑
k=1

z2k

(z2k− p) · (z2k−2− p) =
−1

(1− p) · (z2n−2− p) ,

since zn = −1. Denote by S the left-hand side of the equality. We have:

S− 1
z2
S =

n−1
∑
k=1

(z2k− p)− (z2k−2− p)
(z2k− p) · (z2k−2− p) .

This implies:

(1− 1
z2

)S=
n−1
∑
k=1

(

1
z2k−2− p −

1
z2k− p

)

.

After simplifying we get:

(1− 1
z2

)S=
1

1− p −
1

z2n−2− p =
(z2n−2− p)− (1− p)
(1− p) · (z2n−2− p) .

Since z2n−2 =
1
z2
(from zn = 1) we get:

S =
−1

(1− p) · (z2n−2− p) ,

q.e.d.
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11. Assume that the unit circle is the circumcircle of the quadrilateral abcd. Since ac is its diameter
we have c= −a. Furthermore by T2.5 we have that

m=
ab(c+d)− cd(a+b)

ab− cd =
2bd+ad−ab

d+b
.

According to T2.3 we have that n =
2bd
b+d

, hence m− n =
a(d−b)
b+d

and m − n =
b−d
a(b+d)

. Now

we have
m−n
m −n = − a− c

a − c = a2,

hence according to T1.3 mn⊥ ac, q.e.d.

12. Assume that the unit circle is the circumcircle of the triangle abc. Using T6.3 we have h =

a+ b+ c, and using T2.4 we have e =
1
2

(

a+ b+ c− ac
b

)

. Since paqb is a parallelogram the
midpoints of pq and ab coincide, and according to T6.1 q= a+b− p and analogously r= a+c− p.
Since the points x,a,q are colinear, we have (using T1.2)

x−a
x −a =

a−q
a −q =

p−b
p −b

= −pb,

or, equivalently x =
pb+a2−ax

abp
. Since the points h,r,x are colinear as well, using the same theorem

we get
x−h
x −h

=
h− r
h − r

=
b+ p
b + p

= bp,

i.e.

x =
x−a−b− c+ p+

bp
a

+
bp
c

bp
.

Equating the expressions obtained for x we get

x=
1
2

(

2a+b+ c− p− bp
c

)

.

By T1.1 it is sufficient to prove that

e− x
e − x =

a− p
a − p = −ap.

The last follows from

e− x=
1
2

(

p+
bp
c

−a− ac
b

)

=
bcp+b2p−abc−ac2

2bc
=

(b+ c)(bp−ac)
2bc

,

by conjugation.

13. We will assume that the circumcircle of the quadrilateral abcd is the unit circle. Using T2.4 and
T6.1 we get

p= a+b− ab
c

, q= a+d+
ad
c

(1).

Let H be the orthocenter of the triangle ABD. By T6.3 we have h = a+ b+ d, hence according to
T1.2 it is enough to prove that

p−h
p −h

=
q−h
q −h

. (2)
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Chaning for p from (1) we get

p−h
p −h

=
a+b− ab

c
−a−b−d

1
a

+
1
b
− c
ab

− 1
a
− 1
b
− 1
d

=
abd
c

,

and since this expression is symmetric with respect to b and d, (2) is clearly satisfied.

14. Assume that the unit circle is the circumcircle of the triangle abc and assume that a′,b′,c′ are
feet of perpendiculars from a,b,c respectively. From T2.4 we have

a′ =
1
2

(

a+b+ c− bc
a

)

, b′ =
1
2

(

a+b+ c− ca
b

)

, c′ =
1
2

(

a+b+ c− ab
c

)

.

Since a′,b′,c′ are midpoints of ad,be,c f respectively according to T6.1 we have

d = b+ c− bc
a

, e= a+ c− ac
b

, f = a+b− ab
c

.

By T1.2 the colinearity of the points d,e, f is equivalent to

d− e
d − e

=
f − e
f − e

.

Since d− e = b−a+
ac
b
− bc
a

= (b−a)ab− c(a+b)
ab

and similarly f − e= (b− c)bc−a(b+ c)
bc

,
by conjugation and some algebra we get

0= (a2b+a2c−abc)(c−a−b)− (c2a+ c2b−abc)(a−b− c)

= (c−a)(abc−a2b−ab2−a2c−ac2−b2c−bc2). (1)

Now we want to get the necessary and sufficient condition for |h| = 2 (the radius of the circle is 1).
After the squaring we get

4 = |h|2 = hh = (a+b+ c)
(1
a

+
1
b

+
1
c

)

=
a2b+ab2+a2c+ac2+b2c+bc2+3abc

abc
. (2)

Now (1) is equivalent to (2), which finishes the proof.

15. Assume that the unit circle is the circumcircle of the triangle abc. Let a′,b′,c′ be the midpoints
of bc,ca,ab. Since aa1 ⊥ ao and since a1,b′,c′ are colinear, using T1.3 and T1.2, we get

a−a1
a −a1

= − a−o
a −o = −a2, b′ − c′

b′ − c′
=
b′ −a1
b′ −a1

.

From the first equality we have a1 = 2a−a1
a2 , and since from T6.1 b′ =

a+ c
2

and c′ =
a+b
2

we also

have a1 =
ab+bc+ ca−aa1

2abc
. By equating the above expressions we get a1=

a2(a+b+ c)−3abc
a2−2bc .

Similarly b1 =
b2(a+b+ c)−3abc

2(b2−ac) and c1 =
c2(a+b+ c)−3abc

2(c2−2ab) . Now we have

a1−b1 =
a2(a+b+ c)−3abc

2(a2−bc) − b
2(a+b+ c)−3abc
2(b2−ac) = −c(a−b)

3(a+b+ c)
2(a2−bc)(b2−ac) ,
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and it is easy to verify the condition for a1b1 ⊥ ho, which is according to T1.3:
a1−b1
a1 −b1

= − h−o
h −o

= − (a+b+ c)abc
ab+bc+ ca

.

Similarly a1c1 ⊥ ho, implying that the points a1, a2, and a3 are colinear.

16. Assume that the unit circle is the circumcircle of the triangle abc. By T2.4 we have that b1 =
1
2

(

a+ b+ c− ac
b

)

and c1 =
1
2

(

a+ b+ c− ab
c

)

, according to T6.1 m =
b+ c
2
, and according to

T6.3 h = a+b+ c. Now we will determine the point d. Since d belongs to the chord bc according

to T2.2 d =
b+ c−d
bc

. Furthermore, since the points b1, c1, and d are colinear, according to T1.2
we have

d−b1
d −b1

=
b1− c1
b1 − c1

=
a
(b
c
− c
b

)

1
a

( c
b
− b
c

)

= −a2.

Now we have that d =
a2b1 +b1−d

a2
, hence

d =
a2b+a2c+ab2+ac2−b2c−bc2−2abc

2(a2−bc) .

In order to prove that dh⊥ am (see T1.3) it is enough to prove that d−h
d −h

=− m−a
m −a . This however

follows from

d−h =
b2c+bc2+ab2+ac2−a2b−a2c−2a3

2(a2−bc)

=
(b+ c−2a)(ab+bc+ ca+a2)

2(a2−bc)

and m−a=
b+ c−2a

2
by conjugation.

17. Assume that the unit circle is the circumcircle of the triangle abc. By T2.4 we have that f =
1
2

(

a+b+ c− ab
c

)

. Since a,c, p are colinear and ac is a chord of the unit circle, according to T2.2

we have p =
a+ c− p
ac

. Since f o⊥ p f using T1.3 we coclude

f −o
f −o

= − p− f
p − f

.

From the last two relations we have

p= f
2ac f − (a+ c)
ac f − f

=

(

a+b+ c− ab
c

)

c2

b2+ c2
.

Let ∠ph f = ϕ , then
f −h
f −h

= ei2ϕ
p−h
p −h

.

Since p−h= −bab+bc+ ca+ c2

b2+ c2
, and by conjugation

p −h = −c(ab+bc+ ca+b2)
ab(b2+ c2)

,
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f −h=
ab+bc+ ca+ c2

2c
, f −h =

ab+bc+ ca+ c2

2abc
, we see that ei2ϕ =

c
b
. On the other hand we

have
c−a
c −a = ei2α

b−a
b −a

, and using T1.2 ei2α =
c
b
. We have proved that α = π + ϕ or α = ϕ , and

since the first is impossible, the proof is complete.

18. First we will prove the following useful lemma.

Lemma 1. If a, b, c, a′, b′, c′ are the points of the unit circle, then the lines aa′,bb′,cc′ concurrent
or colinear if and only if

(a−b′)(b− c′)(c−a′) = (a− c′)(b−a′)(c−b′).

Proof. Let x be the intersection of aa′ and bb′, and let y be the intersection of the lines aa′ and
cc′. Using T2.5 we have

x=
aa′(b+b′)−bb′(a+a′)

aa′ −bb′ , y=
aa′(c+ c′)− cc′(a+a′)

aa′ − cc′ .

Here we assumed that these points exist (i.e. that none of aa′ ‖ bb′ and aa′ ‖ cc′ holds). It is obvious
that the lines aa′, bb′, cc′ are concurrent if and only if x= y, i.e. if and only if

(aa′(b+b′)−bb′(a+a′))(aa′ − cc′) = (aa′(c+ c′)− cc′(a+a′))(aa′ −bb′).

After simplifying we get aa′b+ aa′b′ − abb′ − a′b′b− bcc′ − b′cc′ = aa′c+ aa′c′ − bc′c− bb′c′ −
acc′ − a′cc′, and since this is equivalent to (a− b′)(b− c′)(c− a′) = (a− c′)(b− a′)(c− b′), the
lemma is proven. �
Now assume that the circumcircle of the hexagon is the unit circle. Using T1.1 we get

a2−a4
a2 −a4

=
a0−a′0
a0 −a′0

,
a4−a0
a4 −a0

=
a2−a′2
a2 −a′2

,
a2−a0
a2 −a0

=
a4−a′4
a4 −a′4

,

hence a′0 =
a2a4
a0

,a′2 =
a0a4
a2

i a′4 =
a0a2
a4
. Similarly, using T2.5 we get

a′3 =
a′0a3(a2+a3)−a2a3(a′0+a3)

a′0a3−a2a4
=
a4(a3−a2)+a3(a2−a0)

a3−a0
.

Analogously,

a′5 =
a0(a5−a4)+a5(a4−a2)

a5−a2
, a′1 =

a2(a1−a0)+a1(a0−a4)
a1−a4

.

Assume that the points a′′3 ,a′′1,a′′5 are the other intersection points of the unit circle with the lines
a0a′3, a4a

′
1, a2a

′
5 respectively. According to T1.2

a′3−a0
a′3 −a0

=
a′′3−a0
a′′3 −a0

= −a′′3a0,

and since a0−a′3 =
a3(2a0−a2−a4)+a2a4−a20

a3−a0
, we have

a′′3−a4 =
(a0−a2)2(a3−a4)

a0a2(a3−a0)(a0 −a′3 )
, a′′3−a2 =

(a0−a4)2(a3−a2)
a0a4(a3−a0)(a0 −a′3 )

.

Analogously we get

a′′1−a0 = a′′3−a4 =
(a2−a4)2(a1−a0)

a2a4(a1−a4)(a4 −a′1 )
,
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a′′1−a2 = a′′3−a4 =
(a4−a0)2(a1−a2)

a0a4(a1−a4)(a4 −a′1 )
,

a′′5−a0 = a′′3−a4 =
(a2−a4)2(a5−a0)

a2a4(a5−a0)(a2 −a′5 )
,

a′′5−a4 = a′′3−a4 =
(a0−a2)2(a5−a4)

a0a2(a5−a4)(a2 −a′5 )
.

Using the lemma and the concurrence of the lines a0a3, a1a4, and a2a5 (i.e. (a0−a1)(a2−a3)(a4−
a5) = (a0− a5)(a2− a1)(a4− a3)) we get the concurrence of the lines a0a′′3, a4a′′1, and a2a′′5, i.e.
(a0−a′′1)(a2−a′′3)(a4−a′′5) = (a0−a′′5)(a2−a′′1)(a4−a′′3), since they, obviously, intersect.

19. [Obtained from Uroš Rajković] Assume that the unit circle is the circumcircle of the triangle
abc. If A1, B1, andC1 denote the feet of the perpendiculars, we have from T2.4:

a1 =
1
2

(

b+ c+m− bc
m

)

,

b1 =
1
2

(

a+ c+m− ac
m

)

, and

c1 =
1
2

(

a+b+m− ab
m

)

.

We further get:

a1− c1
b1− c1

=
c−a+

ab−bc
m

c−b+
ab−ac
m

=
(c−a)(m−b)
(c−b)(m−a) =

a 1− c1
b 1− c1

,

and, according to T1.2, the points A1, B1, andC1 are colinear.

20. The quadrilateral ABCD is cyclic, and we assume that it’s circumcircle is the unti circle. Let a1,
a2, and a3 denote the feet of the perpendiculars from a to bc, cd, and db respectively. Denote by b1,
b2, and b3 the feet of the perpendiculars from b to ac, cd, and da respectively. According to T2.4 we
have that

a1 =
1
2

(

a+b+ c− bc
a

)

, a2 =
1
2

(

a+b+d− bd
a

)

, a3 =
1
2

(

a+ c+d− cd
a

)

b1 =
1
2

(

b+a+ c− ac
b

)

, b2 =
1
2

(

b+ c+d− cd
b

)

, b3 =
1
2

(

b+d+a− da
b

)

The point x can be obtained from the condition for colinearity. First from the colinearity of x,a1,a2
and T1.2 we have that

x−a1
x −a1

=
a1−a2
a1 −a2

=

1
2

(

c−d+
bd
a

− bc
a

)

1
2

(1
c
− 1
d

+
a
bd

− a
bc

)
=
bcd
a

,

and after simplifying

x =
x− 1

2

(

a+b+ c+d− abc+acd+abd+bcd
a2

)

bcd
a.

Similarly from the colinearity of the points x, b1, and b2 we get

x =
x− 1

2

(

a+b+ c+d− abc+acd+abd+bcd
b2

)

acd
b,
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and from this we conclude
x=

1
2

(

a+b+ c+d
)

.

Let h= a+c+d (by T6) be the orthocenter of the triangle acd. In order to finish the proof, according
to T1.2 it is enough to show that

x− c
x − c =

h− c
h − c

=
a+b+d− c
a +b +d − c

.

On the other hand x− c=
1
2

(

a+b+d− c
)

, from which the equality is obvious.

21. Using the last problem we have that the intersection of the lines l(a;bcd) and l(b;cda) is the

point x=
1
2

(

a+b+ c+d
)

, which is a symmetric expression, hence this point is the intersection of
every two of the given lines.

22. Using the last two problems we get the locus of points is the set of all the points of the form
x =

1
2

(

a+ b+ c+ d
)

, when d moves along the circle. That is in fact the circle with the radius
1
2

and center
a+b+ c
2

, which is the midpoint of the segment connecting the center of the given circle
with the orthocenter of the triangle abc.

23. Assume that the unit circle is the circumcircle of the triangle abc. From T1.3 and the condition
ad ⊥ ao we have that

d−a
d −a

= − a−o
a −o = −a2,

and after simplifying d =
2a−d
a2

. Since the points b,c,d are colinear and bc is the chord of the unit

circle, according to T2.2 d =
b+ c−d
bc

, and solving the given system we get d =
a2(b+ c)−2abc

a2−bc .

Since e belongs to the perpendicular bisector of abwe have oe⊥ ab. According to T1.3 and e−o
e −o =

− a−b
a −b

= ab, i.e. e =
e
ab
. From be ⊥ bc, using T1.3 again we get b− e

b − e
= − b− c

b − c
= bc, or

equivalently e =
c−b+ e
bc

=
e
ab
. Hence e=

a(c−b)
c−a . Similarly we have f =

a(b− c)
b−a . Using T1.2

we see that it is enough to prove that
d− f
d − f

=
f − e
f − e

. Notice that

d− f =
a2(b+ c)−2abc

a2−bc − a(b− c)
b−a =

a2b2+3a2bc−ab2c−2a3b−abc2
(a2−bc)(b−a)

=
ab(a− c)(b+ c−2a)

(a2−bc)(b−a) ,

and similarly d− e=
ac(a−b)(b+ c−2a)

(a2−bc)(c−a) . After conjugation we see that the required condition is

easy to verify.

24. [Obtained from Uroš Rajković] Assume that the unit circle is the incircle of the hexagon
ABCDEF . After conjugating and using T2.5 we get:

m =
a+b− (d+ e)
ab−de , n =

b+ c− (e+ f )
bc− e f , p =

c+d− ( f +a)
cd− f a ,
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hence:
m −n =

(b− e)(bc− cd+de− e f + f a−ab)
(ab−de)(bc− e f ) ,

and analogously:

n − p =
(c− f )(cd−de+ e f − f a+ab−bc)

(bc− e f )(cd− f a) .

From here we get:
m −n
n − p =

(b− e)(cd− f a)
( f − c)(ab−de).

Since the numbers a , b , c , d , e , and f are equal to
1
a
,
1
b
,
1
c
,
1
d
,
1
e
, and

1
f
, respectively, we see

that it is easy to verify that the complex number on the left-hand side of the last equality equal to
its complex conjugate, hence it is real. Now according to T1.2 the points M, N, and P are colinear,
q.e.d.

25. Assume that the quadrilateral abcd is inscribed in the unit circle. Using T2.5 we get

e =
ab(c+d)− cd(a+b)

ab− cd ,

f =
ad(b+ c)−bc(a+d)

ad−bc mboxand

g =
ac(b+d)−bd(a+ c)

ac−bd . (1)

In order to prove that o= 0 is the orthocenter of the triangle e f g, it is enough to prove that o f ⊥ eg
and og⊥ e f . Because of the symmetry it is enough to prove one of these two relateions. Hence, by
T1.3 it is enough to prove that

f −o
f −o

=
e−g
e −g (2).

From (1) we have that

f −o
f −o

=

ad(b+ c)−bc(a+d)
ad−bc

(b+ c)− (a+d)
bc−ad

=
ad(b+ c)−bc(a+d)
a+d− (b+ c)

,(3)

or equivalently

e−g=
(a−d)(ab2d−ac2d)+ (b− c)(bcd2−a2bc)

(ab− cd)(ac−bd)

=
(a−d)(b− c)((b+ c)ad− (a+d)bc)

(ab− cd)(ac−bd) (4)

and by conjugation

e −g =
(a−d)(b− c)(b+ c− (a+d))

(ab− cd)(ac−bd) (5).

Comparing the expressions (3),(4), and (5) we derive the statement.

26. Assume that the unit circle is the circumcircle of the triangle abc and assume that a = 1. Then

c = b and t = −1. Since p belongs to the chord bc, using T2.2 we get that p = b+
1
b
− p. Since x

belongs to the chord ab, in the similar way we get x =
1+b− x
b

. Since px ‖ ac by T1.1 we have

p− x
p − x =

a− c
a − c = −1

b
,
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i.e. x = pb+ p − xb. From this we get x=
b(p+1)
b+1

. Similarly we derive y=
p+1
b+1

. According to

T1.3 it remains to prove that
x− y
x − y = − p− t

p − t = − p+1
p +1

. This follows from x− y=
(p+1)(b−1)

b+1
and by conjugation

x − y =
(p +1)

(1
b
−1

)

1
b

+1
= − (p +1)(b−1)

b+1
.

27. Assume that the unit circle is the circumcircle of the quadrilateral abcd. Using T6.1 we have k=
a+b
2
, l =

b+ c
2
, m=

c+a
2

and n=
d+a
2
. We want to determine the coordinate of the orthocenter

of the triangle akn. Let h1 be that point and denote by h2, h3, and h4 the orthocenters of bkl, clm,
and dmn respectively. Then kh1 ⊥ an and nh1 ⊥ ak. By T1.3 we get

k−h1
k −h1

= − a−n
a −n and

n−h1
n −h1

= − a− k
a − k

. (1)

Since
a−n
a −n =

a−d
a −d

= −ad,

we have that

h1 =
kad− k+h1

ad
.

Similarly from the second of the equations in (1) we get

h1 =
nab−n+h1

ab
.

Solving this system gives us that

h1 =
2a+b+d

2
.

Symmetricaly

h2 =
2b+ c+a

2
, h3 =

2c+d+b
2

, h4 =
2d+a+ c

2
,

and since h1+h3 = h2+h4 using T6.1 the midpoints of the segments h1h3 and h2h4 coincide hence
the quadrilateral h1h2h3h4 is a parallelogram.

28. Assume that the unit circle is the circumcircle of the triangle abc. By T2.3 we have that a =
2em
e+m

i b =
2mk
m+ k

. Let’s find the point p. Since the points m, k, and p are colinear and mk is the

chord of the unit circle, by T2.2 we have that p =
m+ k− p
mk

. Furthermore the points p, e, and c are
colinear. However, in this problem it is more convenient to notice that pe⊥ oe and now using T1.3
we have

e− p
e − p = − e−o

e −o = −e2

and after simplifying p =
2e− p
e2

. Equating the two expressions for p we get

p= e
(m+ k)e−2mk
e2−mk .
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In order to finish the proof using T1.3 it is enough to prove that
p−o
p −o = − e−b

e −b
. This will follow

from
e−b=

e(m+ k)−2mk
m+ k

,

and after conjugating e −b =
m+ k−2e
(m+ k)e

and p =
m+ k−2e
mk− e2 .

29. Assume that the circle inscribed in abcd is the unit one. From T2.3 we have that

a=
2nk
n+ k

, b=
2kl
k+ l

, c=
2lm
l+m

, d =
2mn
m+n

. (1)

Using T2.5 we get

s=
kl(m+n)−mn(k+ l)

kl−mn . (2)

According to T1.1 it is enough to verify that

s−o
s −o =

b−d
b −d

.

From (1) we have that

b−d = 2
kl(m+n)−mn(k+ l)

(k+ l)(m+n)
, (3)

and after conjugating

b −d =
m+n− (k+ l)
(k+ l)(m+n)

. (4)

From (2) we have that
s
s

=
kl(m+n)−mn(k+ l)

kl−mn , (5)

and comparing the expressions (3),(4), and (5) we finish the proof.

30. [Obtained from Uroš Rajković] Let P be the point of tangency of the incircle with the line BC.
Assume that the incircle is the unit circle. By T2.3 the coordinates of A, B, andC are respectively

a=
2qr
q+ r

, b=
2pr
p+ r

i c=
2pq
p+q

.

Furthermore, using T6.1 we get x =
1
2
(b+ c) =

pr
p+ r

+
pq
p+q

, y = αb = α
2pr
p+ r

, and z = βc =

β
2pq
p+q

(α,β ∈ R). The values of α and β are easy to compute from the conditions y ∈ rq and
z ∈ rq:

α =
(p+ r)(q+ r)
2(p+q)r

i β =
(p+q)(r+q)
2(p+ r)q

.

From here we get the coordinates of y and z using p, q, and r:

y=
p(q+ r)
(p+q)

and z=
p(r+q)
(p+ r)

.

We have to prove that:

∠RAQ= 60◦ ⇐⇒ XYZ is equilateral.
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The first condition is equivalent to ∠QOR= 60◦ i.e. with

r = q · ei2π/3.

The second condition is equivalent to (z− x) = (y− x) · eiπ/3. Notice that:

y− x=
p(q+ r)
(p+q)

−
(

pr
p+ r

+
pq
p+q

)

=
pr(r−q)

(p+q)(p+ r)
and

z− x=
p(p+q)
(p+ r)

−
(

pr
p+ r

+
pq
p+q

)

=
pq(q− r)

(p+q)(p+ r)
.

Now the second condition is equivalent to:

pq(q− r)
(p+q)(p+ r)

=
pr(r−q)

(p+q)(p+ r)
eiπ/3,

i.e. with q= −r eiπ/3. It remains to prove the equivalence:

r = q ei2π/3⇐⇒ q= −r eiπ/3,

which obviously holds.

31. According to T1.1 it is enough to prove that

m−o
m −o =

n−o
n −o .

If p,q,r,s are the points of tangency of the incircle with the sides ab,bc,cd,da respectively using
T2.3 we get

m=
a+ c
2

=
ps
p+ s

+
qr
q+ r

=
pqs+ prs+ pqr+qrs

(p+ s)(q+ r)
,

and after conjugatingm =
p+q+ r+ s
(p+ s)(q+ r)

and

m
m

=
pqr+ ps+ prs+qrs

p+q+ r+ s
.

Since the last expression is symmetric in p,q,r,s we conclude that
m
m

=
n
n
, as required.

32. Assume that the incircle of the quadrilateral abcd is the unit circle. We will prove that the
intersection of the lines mp and nq belongs to bd. Then we can conlude by symmetry that the point
also belongs to ac, which will imply that the lines mp, nq, ac, and bd are concurrent. Using T2.3 we
have that

b=
2mn
m+n

, d =
2pq
p+q

.

If x is the intersection point of mp and nq, using T2.5 we get

x=
mp(n+q)−nq(m+ p)

mp−nq .

We have to prove that the points x,b,d are colinear, which is according to T1.2 equivalent to saying
that

b−d
b −d

=
b− x
b − x

.
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This follows from b−d =
2mn
m+n

− 2pq
p+q

= 2
mn(p+q)− pq(m+n)

(m+n)(p+q)
and

b− x =
2mn
m+n

− mp(n+q)−nq(m+ p)
mp−nq

=
m2np−mn2q−m2pq+n2pq+m2nq−mn2p

(mp−nq)(m+n)

=
(m−n)(mn(p+q)− pq(m+n))

(m+n)(mp−nq) ,

by conjugation.

33. Assume that the unit circle is the incumcircle of the triangle abc. Using T7.3 we have that the
circumecenter has the coordinate

o=
2de f (d+ e+ f )

(d+ e)(e+ f )( f +d)
.

Let’s calculate the coordinate of the circumcenter o1 of the triangle xyz. First, according to T6.1

we have that x =
e+ f
2
, y =

d+ f
2

and z =
d+ e
2
. Moreover by T1.3 we have that

o1−
x+ y
2

o1 −
x+ y
2

=

− x− y
x − y =

(e−d)/2
(e −d )/2

= −ed, and simplifying

o1 =

− f
2

+
ed
2 f

+o1

ed
,

and similarly o1 =
−d
2

+
e f
2d

+o1
e f

. By equating we get o1 =
e+ f +d

2
. Now by T1.2 it is enough to

prove that
o1− i
o1 − i

=
o− i
o − i , which can be easily obtained by conjugation of the previous expressions

for o and o1.

34. Assume that the incircle of the triangle abc is the unit circle. Using T7.1 we get b =
2 f d
f +d

and

c=
2ed
e+d

. From some elemetary geometry we conclude that k is the midpoint of segment e f hence

by T6.1 we have k =
e+ f
2
. Let’s calculate the coordinate of the point m. Since m belongs to the

chord f d by T2.2 we have m =
f +d−m
fd

. Similarly we have that the points b,m,k are colinear and

by T1.2 we get
k−m
k −m

=
b− k
b − k

, i.e. m = m
b − k
b− k +

kb− kb
b− k . Now equating the expressions for m

one gets

m=
( f +d)(b− k)+ (kb− kb) f d

(b − k ) f d+b− k
.

Since b− k=
3 f d−de− f 2− e f

2( f +d)
and kb − kb=

(e+ f )(e−d) f d
e( f +d)

we get

m=
4e f 2d+ e f d2− e2d2− e2 f 2−2 f 2d2− f 3e
6e f d− e2d− ed2− e f 2− e2 f −d2 f −d f 2

299
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and symmetrically

n=
4e2 f d+ e f d2− f 2d2− e2 f 2−2e2d2− e3 f
6e f d− e2d− ed2− e f 2− e2 f −d2 f −d f 2 .

By T1.3 it is enough to prove that
m−n
m −n = − i−d

i −d
= −d2. This however follows from

m−n=
(e− f )(4e f d− ed2− f d2− f e2− f 2e)
6e f d− e2d− ed2− e f 2− e2 f −d2 f −d f 2 ,

by conjugation.

35. Assume that the unit circle is the inrcumcircle of the triangle abc. Assume that k, l, and m are
the points of tangency of the incircle with the sides bc, ca, and ab, respectively. By T7 we have that

o=
2klm(k+ l+m)

(k+ l)(l+m)(m+ k)
, h=

2(k2l2+ l2m2+m2k2+ klm(k+ l+m))

(k+ l)(l+m)(m+ k)
.

Since the segments io and bc are parallel we have that io ⊥ ik, which is by T1.3 equivalent to
o− i
o − i = − k− i

k − i
= −k2. After conjugating the last expression for o becomes

klm(k+ l+m)+ k2(kl+ lm+mk) = 0. (∗)

Let’s prove that under this condition we have ao ‖ hk. According to T1.1 it is enough to prove that
a−o
a −o =

h− k
h − k

. According to T7.1 we have that a=
2ml
m+ l

, and

a−o=
2ml
m+ l

− 2klm(k+ l+m)

(k+ l)(l+m)(m+ k)
=

2m2l2

(k+ l)(l+m)(m+ k)
.

Now we get that it is enough to prove that

h− k
h − k

=
l2m2

k2
.

Notice that

h− k =
2(k2l2+ l2m2+m2k2+ klm(k+ l+m))

(k+ l)(l+m)(m+ k)
− k

=
k2l2+ k2m2+2l2m2+ k2lm+ kl2m+ klm2− k2l− k3m− k2lm

(k+ l)(l+m)(m+ k)

=
klm(k+ l+m)− k2(k+ l+m)+ k2l2+2l2m2+m2l2

(k+ l)(l+m)(m+ k)

=
(

according to (*)
)

=
(kl+ lm+mk)2+ l2m2

(k+ l)(l+m)(m+ k)

=
(

according to (*)
)

=
(kl+ lm+mk)2((k+ l+m)2+ k2)
(k+ l+m)2(k+ l)(l+m)(m+ k)

.

After conjugating the last expression for h− k we get

h − k =
(k+ l+m)2+ k2

(k+ l)(l+m)(m+ k)
,
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and using the last expression for h− k we get

h− k
h − k

=
(kl+ lm+mk)2

(k+ l+m)2
=

(

by (*)
)

=
l2m2

k2
,

which completes the proof.

36. Assume that the incircle of the triangle abc is the unit circle. Then using T7.1we have c=
2t1t2
t1+ t2

.
Our goal is to first determine the point h3. From h3t3 ⊥ it3 by T1.3 we have

h3− t3
h3 − t3

= − t3− i
t3 − i

= −t23 ,

i.e. h3 =
2t3−h3
t23

. Furthermore from ch3 ‖ it3 and T1.1 we have
h3− c
h3 − c

=
t3− i
t3 − i

= t23 . Writing the

similar expression for h3 gives

h3 =
1
2

(

2t3+ c− ct23
)

= t3+
t1t2− t23
t1+ t2

.

Similarly we obtain h2 = t2+
t1t3− t22
t1+ t3

. In order to determine the line symmetric to h2h3 with repsect
to t2t3 it is enough to determine the points symmetric to h2 and h3 with respect to t2t3. Assume that
p2 and p3 are these two points and let h′2 and h′3 be the feet of perpendiculars from h2 and h3 to the

line t2t3 respectively. According to T2.4 we have h′2 =
1
2

(

t2+ t3− t2t3h3
)

hence by T6.1

p2 = 2h′2−h2 =
t1(t22 + t23)
t2(t1+ t3)

and symmetrically p3 =
t1(t22 + t23)
t3(t1+ t2)

. Furthermore

p2− p3 =
t21 (t

2
2 + t23)(t3− t2)

t1t3(t1+ t2)(t1+ t3)
,

and if the point x belongs to p2p3 by T1.2 the following must be satisfied:

x− p2
x − p2

=
p2− p3
p2 − p3

= −t21 .

Specifically if x belongs to the unit circle we also have x =
1
x
, hence we get the quadratic equation

t2t3x2− t1(t22 + t23)x+ t
2
1t2t3 = 0.

Its solutions are x1 =
t1t2
t3
and x2 =

t1t3
t2
and these are the intersection points of the line p2p3 with the

unit circle. Similarly we get y1 =
t1t2
t3
, y2 =

t2t3
t1
, and z1 =

t3t1
t2

,z2 =
t2t3
t1
, which finishes the proof.

37. Assume that the circumcircle of the triangle abc is the unit circle. Let u,v,w be the complex
numbers described in T8. Using this theorem we get that l = −(uv+ vw+wu). By elementary
geometry we know that the intersection of the line al and the circumcircle of the triangle abc is
the midpoint of the arc bc which doesn’t contain the point a. That means a1 = −vw and similarly
b1 = −uw and c1 = −uv.
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(a) The statement follows from the equality

1=
|l−a1| · |l− c1|

|l−b| =
|u(v+w)| · |w(u+ v)|
|uv+uw+ vw+ v2| =

|v+w| · |u+ v|
|(u+ v)(v+w)| = 1.

(b) If x is the point of the tangency of the incircle with the side bc then x is the foot of the

perpendicular from the point l l to the side bc and T2.4 implies x =
1
2

(

b+ c+ l− bcl
)

and

consequently r = |l− x| =
1
2

∣

∣

∣

∣

(u+ v)(v+w)(w+u)
u

∣

∣

∣

∣

=
1
2
|(u+ v)(v+w)(w+ u)|. Now the

required equality follows from

|l−a| · |l−b|
|l− c1|

=
|(u+ v)(u+w)| · |(u+ v)(v+w)|

|w(u+ v)|
= |(u+ v)(v+w)(w+u)|.

(c) By T5 we have that

S(ABC) =
i
4

∣

∣

∣

∣

∣

∣

u2 1/u2 1
v2 1/v2 1
w2 1/w2 1

∣

∣

∣

∣

∣

∣

i S(A1B1C1) =
i

4uvw

∣

∣

∣

∣

∣

∣

vw u 1
uw v 1
uv w 1

∣

∣

∣

∣

∣

∣

,

hence
S(ABC)

S(A1B1C1)
=

u4w2+w4v2+ v4u2− v4w2−u4v2−w4u2
uvw(v2w+uw2+u2v−uv2−u2w− vw2)

=
(u2− v2)(uw+ vw−uv−w2)(uw+ vw+uv+w2)

uvw(u− v)(uv+w2−uw− vw)

= − (u+w)(vw+uw+uv+w2)
uvw

= − (u+ v)(v+w)(w+u)
uvw

.

Here we consider the oriented surface areas, and substracting the modulus from the last ex-
pression gives us the desired equality.

38. First solution. Assume that the circumcircle of the triangle abc is the unit circle and u,v,w are
the complex numbers described in T8. Let d,e, f be the points of tangency of the incircle with the

sides bc,ca,ab respectively. By T2.4 we have that f =
1
2

(

a+b+z−abz
)

=
1
2

(

u2+v2+w2−uv−

vw−wu+
uv(u+ v)
2w

)

. By symmetry we get the expressions for e and f and by T6.1 we get

k=
1
3

(

u2+ v2+w2−uv− vw−wu+
uv(u+ v)
2w

+
vw(v+w)

2u
− wu(w+u)

2v

)

=

=
(uv+ vw+wu)(u2v+uv2+uw2+u2w+ v2w+ vw2−4uvw)

6uvw
.

Now it is easy to verify
z−o
z −o =

k−o
k −o

, which is by T1.2 the condition for colinearity of the points

z,k,o. Similarly we also have

|o− z|
|z− k| =

|uv+ vw+wu|
∣

∣

∣

∣

(uv+ vw+wu)(u2v+uv2+uw2+u2w+ v2w+ vw2+2uvw)

6uvw

∣

∣

∣

∣

=
6

|(u+ v)(v+w)(w+u)| =
6R
2r

=
3R
r

,
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which completes the proof.
Second solution. Assume that the incircle of the triangle abc is the unit circle and let d,e, f

denote its points of tangency with the sides bc,ca,ab respectively. According to T7.3 we have

that o =
2de f (d+ e+ f )

(d+ e)(e+ f )( f +d)
and according to T6.1 k =

d+ e+ f
3

. Now it is easy to verify that

o− z
o − z =

k− z
k − z

which is by T1.2 enough to establish the colinearity of the points o,z,k. We also have
that

|o− z|
|z− k| =

∣

∣

∣

∣

d+ e+ f
(d+ e)(e+ f )( f +d)

∣

∣

∣

∣

∣

∣

∣

∣

d+ e+ f
3

∣

∣

∣

∣

=
3

|(d+ e)(e+ f )( f +d)| =
3R
r

.

39. Assume that the circumcircle of the triangle abc is the unit circle and let u,v,w be the complex
numbers described in T8 (here p = w2). According to this theorem we have i = −uv− vw−wu.
Since |a− c|= |a−b| by T1.4 it holds

c−a= ei∠cab(b−a).

By the same theorem we have

−vw−u2

−vw −u2
= ei2

∠pab
2

v2−u2

v2 −u2
,

hence ei∠pab = −w
v
. Now we have

c=
u2w+u2v− v2w

v
,

and symmetrically d =
v2w+ v2u−u2w

u
. By T1.3 it is enough to prove that

c−d
c −d

= − o− i
o − i = −uv+ vw+wu

u+ v+w
uvw.

This follows from c−d =
(u2− v2)(uv+ vw+wu)

uv
by conjugation.

40. Assume that the circumcircle of the triangle abc is the unit circle. By T8 there are numbers
u,v,w such that a = u2,b = v2,c = w2 and the incenter is i = −(uv+ vw+wu). If o′ denotes the

foot of the perpendicular from o to bc then by T2.4 we have o′ =
1
2

(

b+ c
)

, and by T6.1 o1 = 2o′ =
b+ c= v2+w2. By T1.2 the points a, i,o1 are colinear if and only if

o1−a
o1 −a

=
a− i
a − i .

Since
o1−a
o1 −a

=
o1−a
o1 −a

=
v2+w2−u2

u2(v2+w2)− v2w2 u
2v2w2 and

a− i
a − i =

u(u+ v+w)+ vw
vw+uw+uv+u2

u2vw= u2vw,

we get
v3w+ vw3−u2vw− (u2v2+u2w2− v2w2) = (vw−u2)(v2+w2+ vw) = 0.
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This means that either vw = u2 or v2+w2 + vw = 0. If vw = u2 then by T6.1 the points u2 and
−vw belong to the same radius hence abc is isosceles contrary to the assumption. This means that
v2+w2+vw= 0. We nowwant to prove that the triangle with the vertices o,−vw,w2 is equilateral. It
is enough to prove that 1= |w2+vw|= |v+w|which is equivalent to 1= (v+w)(v+w) =

(v+w)2

vw
and this to v2+w2+ vw= 0. Since ∠boc= 120◦ we have α = 60◦.

41. Assume that the incumcircle of the triangle abc is the unit circle. According to T8 there are
complex numbers u,v,w such that p= u2,q= v2,r = w2 and p1 = −vw,q1 = −wu,r1 = −uv. Then
p2 = vw,q2 = wu,r2 = uv. By T7.1 we gave

a=
2v2w2

v2+w2
, b=

2w2u2

w2+u2
i c=

2u2w2

u2+w2
,

hence by T6.1

a1 =
w2u2

w2+u2
+

u2v2

u2+ v2
, b1 =

u2v2

u2+ v2
+

v2w2

v2+w2
, c2 =

v2w2

v2+w2
+

w2u2

w2+u2
.

If the point n is the intersection of the lines a1p1 and b1q1 then the triplets of points (n,a1, p1) and
(n,b1,q1) are colinear and using T1.2 we get

n−a1
n −a1

=
a1− p1
a1 − p1

,
n−b1
n −b1

=
b1−q1
b1 −q1

.

Solving this system gives us

n =
u4v4+ v4w4+w4u4

(u2+ v2)(v2+w2)(w2+u2)
+

uvw(u3v2+u2v3+u3w2+u2w3+ v3w2+ v2w3)
(u2+ v2)(v2+w2)(w2+u2)

+

3u2v2w2(u2+ v2+w2)
(u2+ v2)(v2+w2)(w2+u2)

+

2u2v2w2(uv+ vw+wu)
(u2+ v2)(v2+w2)(w2+u2)

.

Since the above expression is symmetric this point belongs to c1r1. The second part of the problem
can be solved similarly.

42. Assume that a is the origin. According to T1.4 we have c′′ − a = eiπ/2(c− a), i.e. c′′ = ic.
Similarly we get b′′ = −ib. Using the same theorem we obtain x− c = eiπ/2(b− c), i.e. x = (1−
i)c+ ib hence by T6.1 p=

1+ i
2
b+

1− i
2
c. Denote by q the intersection of the lines bc and ap. Then

the points a, p,q are colinear as well as the points b,c′′,q. Using T1.2 we get

a− p
a − p =

a−q
a −q ,

b− c′′
b − c′′

=
q−b
q −b

.

From the first equation we conclude that q = q
(1− i)b+(1+ i)c
(1+ i)b+(1− i)c , and from the second we get the

formula q =
q(b + ic)− i(bc+bc)

b− ic . These two imply

q=
i(bc+bc)((1+ i)b+(1− i)c)
2(ibb −2bc+2bc+2icc)

=
(bc+bc)((1+ i)b+(1− i)c)

(b− ic)(b + ic)
.
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Denote by q′ the intersection of ap and cb′′. Then the points a, p,q′ are colinear as well as the points
b′′,c,q′. Hence by T1.2

a− p
a − p =

a−q′
a −q′

,
b′′ − c
b′′ − c

=
q− c
q − c .

The first equation gives q′ = q′
(1− i)b +(1+ i)c
(1+ i)b+(1− i)c , and the second q =

q(c − ib)+ i(bc+bc)
c+ ib

. By

the equating we get

q′ =
(bc+bc)((1+ i)b+(1− i)c)

(b− ic)(b+ ic)
,

hence q= q′, q.e.d.

43. Assume that the origin is the intersection of the diagonals, i.e. o = 0. From the colinearity of

a,o,c and b,o,d using T1.2 we get ac = ac and bd = bd. By T6.1 we getm=
a+b
2

and n=
c+d
2
.

Since om⊥ cd and on⊥ ab by T1.3

c+d
2

−o
c+d
2

−o
= − a−b

a −b
,

a+b
2

−o
a+b
2

−o
= − c−d

c −d
.

From these two equations we get

c=
da(ab−2bb+ab)
b(ab−2aa+ab)

and c=
da(ab+2bb+ab)
b(ab+2aa+ab)

.

The last two expressions give (ab+ ab)(aa − bb) = 0. We need to prove that the last condition is
sufficient to guarantee that a,b,c,d belong to a circle. According to T3 the last is equivalent to

c−d
c −d

b−a
b −a

=
b−d
b −d

c−a
c −a .

Since the points b,d,o are colinear, by T1.2
b−d
b −d

=
b−o
b −o

=
b
b
we get

a− c
a − c =

a−o
a −o =

a
a
. If

ab +ab= 0 then

c−d = d
2ab(a −b)

b(ab−2aa+ab)
,

and the last can be obtained by conjugation. If aa = bb , then

c−d =
d(a−b)(ab+ab)
b(ab−2aa+ab)

,

and in this case we can get the desired statement by conjugation.

44. Let f be the origin and let d = c (this is possible since FC = FD). According to T9.2 we have
that

o1 =
ad(a −d )

ad−ad
, o2 =

bc(b − c)
bc−bc

.

Since cd ‖ a f according to T1.1 a− f
a − f

=
c−d
c −d

= −1, i.e. a = −a and similarly b = −b. Now we
have

o1 =
c(a+ c)
c+ c

, o2 =
c(b+ c)
c+ c

.
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Let’s denote the point e. From T1.2 using the colinearity of a,c,e and b,d,e we get the following
two equations

a− c
a − c =

e−a
e −a ,

b−d
b −d

=
e−b
e −b

.

From these equations we get e =
a(c+ c)− e(a+ c)

a− c and e =
b(c+ c)− e(b+ c)

b− c . By equating
these two we get

e=
ac −bc

a+ c−b− c .

Using T1.3 the condition f e ⊥ o1o2 is equivalent to
o1−o2
o1 −o2

= − f − e
f − e

, which trivially follows

from o1−o2 =
ac − cb
c+ c

by conjugation.

45. Assume that the point p is the origin. Let ac be the real axis and let ∠cpd = ϕ . Then a= α,b=
βeiϕ ,c = γ,d = δeiϕ , where α,β ,γ,δ are some real numbers. Let eiϕ = Π. If |a− f | = ε|a− d|,
then |e− c|= ε|b− c| hence by T6.1 a− f = ε(a−d) and e− c= ε(b− c). Thus we have

f = α(1− ε)+ εδΠ, e= γ(1− ε)+ εβ Π.

Since q belongs to pd we have that q = ρΠ and since q also belongs to e f by T1.2 we have that
f −q
f −q

=
e− f
e − f

, hence

α(1− ε)+ (εδ −ρ)Π

α(1− ε)+ (εδ −ρ)
1
Π

=
(1− ε)(α − γ)+ ε(δ −β )Π

(1− ε)(α − γ)+ ε(δ −β )
1
Π

.

After some algebra we get (Π− 1
Π

)(1− ε)
[

(α − γ)(εδ − ρ)− εα(δ − β )
]

= 0. Since Π �= ±1

(because ∠CPD < 180◦) and ε �= 1 we get ρ = ε
[

δ − α(δ −β )

α − γ

]

. Similarly we get ρ = (1−

ε)
[

α − δ (α − γ)

δ −β

]

, where ρ is the coordinate of the point r. By T9.2 we have

o1 =
rq(r −q)
rq−q =

ρρΠ(ρ −ρ
1
Π

)

ρρΠ−ρρ
1
Π

=
ρΠ−ρ
Π2−1 Π

=

(1− ε)
[

α − δ (α − γ)

δ −β

]

Π− ε
[

δ − α(δ −β )

α − γ

]

Π2−1 Π.

For any other position of the point e on the line ad such that ae = εad the corresponding center of
the circle has the coordinate

o2 =

(1− ε)
[

α − δ (α − γ)

δ −β

]

Π− ε
[

δ − α(δ −β )

α − γ

]

Π2−1 Π.

Notice that the direction of the line o1o2 doesn’t depend on ε and ε . Namely if we denote A =

α − δ (α − γ)

δ −β
and B= δ − α(δ −β )

α − γ
we have

o1−o2
o1 −o2

= −AΠ +B
A+BΠ

Π.
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Thus for every three centers o1,o2,o3 it holds o1o2‖o2o3 hence all the centers are colinear. Since all
the circles have a common point, the circles have another common point.
Remark. We have proved more than we’ve been asked. Namely two conditions AD = BC and
BE = DF are substituted by one BE/BC= DF/AD.
Another advantage of this solutions is that we didn’t have to guess what is the other intersection
point.

46. Let o be the origin. According to the property T9.1 we have that h1 =
(a−b)(ab+ab)

ab −ab
,

h2 =
(c−d)(cd+ cd )

cd − cd
, and according to the theorem 6 t1 =

a+ c
3
, t2 = b+d

3 . Since the points

a,c, and o are colinear as well as the points b,d, and o by T1.2 we have c =
ca
a

, d =
db
b
, hence

h2 =
(c−d)(ab +ab)

ab −ab
. In order to prove that t1t2 ⊥ h1h2, by T1.3, it is enough to verify

t1− t2
t1 − t2

= − h1−h2
h1 −h2

.

This follows from

h1−h2 =
ab +ab
ab −ab

(

a+ c−b−d
)

,

by conjugation.

47. Let Γ be the unit circle. Using T2.3 we get c=
2ab
a+b

. Let o1 be the center of Γ1. Then o1b⊥ ab

(because ab is a tangent) hence by T1.3
o1−b
o1 −b

=− a−b
a −b

= ab. After simplifying o1 =
o1+a−b
ab

.

We have also |o1−b| = |o1− c|, and after squaring (o1−b)(o1 −b) = (o1− c)(o1 − c), i.e. o1 =
o1
b2

− a−b
b(a+b)

. Now we have

o1 =
ab
a+b

+b.

Since the point m belongs to the unit circle it satisfies m =
1
m
and since it belongs to the circle with

the center o1 it satisfies |o1−m|= |o1−b|. Now we have

o1m2−
(o1
b

+o1b
)

m+o1 = 0.

This quadratic equation defines both m and b, and by Vieta’s formulas we have b+m=
o1
o1 b

+b, i.e.

m= b
2a+b
a+2b

.

It remains to prove that the points a, m, and the midpoint of the segment bc colinear. The midpoint
of bc is equal to (b+ c)/2 by T6.1. According to T1.2 it is enough to prove that

a− b+ c
2

a − b+ c
2

=
a−m
a −m = −am,

which is easy to verify.
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48. Assume that the circle k is unit and assume that b = 1. The a = −1 and since p ∈ k we
have p =

1
p
. According to T2.4 we have that q =

1
2

(

p+
1
p

)

, and according to T6.1 we have that

f =

(

p+
1
p

)

−1

2
=

(p−1)2
4p

. Furthermore since c belongs to the circle with the center p and radius

|p−q| we have |p−q|= |p− c| and after squaring

(p−q)(p −q) = (p− c)(p − c).

Since c ∈ k we have c =
1
c
. The relation p−q=

1
2

(

p− 1
p

)

implies

4pc2− (p4+6p2+1)c+4p3 = 0.

Notice that what we obtained is the quadratic equation for c. Since d satisfies the same conditions
we used for c, then the point d is the second solution of this quadratic equation. Now from Vieta’s
formulas we get

c+d =
p4+6p2+1

4p3
, cd = p2.

Since the point g belongs to the chord cd by T2.2 we get

g =
c+d−g
cd

=
p4+6p2+1−4pg

4p3
.

From g f ⊥ cd T1.3 gives g− f
g − f

= − c−d
c −d

= cd = p2. Solving this system gives us

g=
p3+3p2− p+1

4p
.

The necessair and sufficient condition for colinearity of the points a, p,g is (according to T1.2)
a−g
a −g =

a− p
a − p = p. This easily follows from a− g =

p3+3p3+3p+1
4p

and by conjugating

a − g =
1+3p+3p2+ p3

4p2
. Since e belongs to the chord cd we have by T2.2 e =

c+d−g
cd

=

p4+6p2+1−4pe
4p3

, and since pe ⊥ ab T1.3 implies e− p
e − p = − a−b

a −b
= −1, or equivalently e =

p+ 1
p − e. It follows that e =

3p2+1
4p

. Since p− q =
p2−1
2p

= 2
p2−1
4p

= 2
(

e− q
)

, we get

|e− p| = |e− q|. Furthermore since g− e =
p2−1
4

from |p| = 1, we also have |e− q| = |g− e|,
which finishes the proof.

49. Assume that the circle with the diameter bc is unit and that b = −1. Now by T6.1 we have that
b+ c= 0, i.e. c = 1, and the origin is the midpoint of the segment bc. Since p belongs to the unit

circle we have p =
1
p
, and since pa ⊥ p0, we have according to T1.3

a− p
a − p = − p−0

p −0
= −p2.

Simplification yields
a p2−2p+a= 0.

Since this quadratic equation defines both p and q, according to Vieta’s formulas we have

p+q=
2
a

, pq=
a
a

.
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Let h′ be the intersection of the perpendicular from a to bc with the line pq. Since h′ ∈ pq T2.2 gives
h′ =

p+q−h′
pq

=
2− ah
a

. Since ah ⊥ bc according to T1.3 we have a−h
a −h

= − b− c
b − c

= −1, i.e.

h = a+a −h. Now we get
h=

aa +a2−2
a−a .

It is enough to prove that h′ = h, or ch ⊥ ab which is by T1.3 equivalent to h− c
h − c

= − a−b
a −b

. The

last easily follows from

h−1=
aa +a2−2−a+ a

a−a =
(a+1)(a+ a−2)

a−a
and a−b= a+1 by conjugation.

50. Assume that the origin of our coordinate system is the intersection of the diagonals of the
rectangle and that the line ab is parallel to the real axis. We have by T6.1 c+ a = 0, d+ b = 0,

c = b , and d = a . Since the points p,a,0 are colinear T1.2 implies
p
p

=
a
a
, i.e. p = −b

a
p. Let

ϕ = ∠dpb= ∠pbc. By T1.4 we have

c− p
c − p = ei2ϕ

b− p
b − p

,
p−b
p −b

= ei2ϕ
c−b
c −b

,

and after multiplying these equalities and expressing in terms of a and b

p+b
bp+a2

=
a(p−b)2
(bp−a2)2 .

In the polynomial form this writes as

(b2−ab)p3+ p2(b3−2a2b−a3+2ab2)+ p(a4−2a2b2−ab3+2a3b)+a4b−a3b2

= (b−a)(bp3+(a2+3ab+b2)p2−ap(a2+3ab+b2)−a3b) = 0.
Notice that a is one of those points p which satisfy the angle condition. Hence a is one of the
zeroes of the polynomial. That means that p is the root of the polynomial which is obtained from
the previous one after division by p−a i.e. bp2+(a2+3ab+b2)p+a2b= 0. Let’s now determine
the ratio |p−b| : |p− c|. From the previous equation we have bp2+a2b= −(a2+3ab+b2), hence

PB2

PC2
=

(p−b)(p −b)
(p− c)(p − c) =

bp2− (a2+b2)p+a2b
bp2+2abp+ab

=
−2(a2+b2+2ab)
−(a2+b2+2ab)

= 2,

and the required ratio is
√
2 : 1.

51. Assume first that the quadrilateral abcd is cyclic and that its cicrumcircle is the unit circle. If
∠abd = ϕ and ∠bda= θ by T1.4 after squaring we have

d−b
d −b

= ei2ϕ
a−b
a −b

,
c−b
c −b

= ei2ϕ
p−b
p −b

,

c−d
c −d

= ei2θ
p−d
p −d

,
b−d
b −d

= ei2θ
a−d
a −d

.

From the first of these equalities we get ei2ϕ
a
d
, and from the fourth ei2θ =

b
a
. From the second

equality we get p =
ac+bd− pd

abc
, and from the third p =

ac+bd− pb
acd

. Now it follows that

p=
ac+bd
b+d

.
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We have to prove that |a− p |2 = (a− p)(a − p) = |c− p |2 = (c− p)(c − p), which follows from

a− p=
ab+ad−ac−bd

b+d
, a − p =

cd+bc−bd−ac
ac(b+d)

,

c− p=
bc+ cd−ac−bd

b+d
, c − p =

ad+ab−bd−ac
ac(b+d)

.

Assume that |a− p |= |c− p |. Assume that the circumcircle of the triangle abc is unit. Squaring the
last equality gives us that ap +

p
a

= cp +
p
c
, i.e. (a− c)(p − p

ac
) = 0. This means that p =

p
ac
. Let

d belong to the chord d′c. Then according to T2.2 d =
c+d′ −d
cd′

. By the condition of the problem
we have ∠dba= ∠cbp= ϕ and ∠adb= ∠pdc= θ , and squaring in T1.4 yields

a−b
a −b

= ei2ϕ
d−b
d −b

,
p−b
p −b

= ei2ϕ
c−b
c −b

,

b−d
b −d

= ei2θ
a−d
a −d

,
c−d
c −d

= ei2θ
p−d
p −d

.

Multiplying the first two equalities gives us

a−b
a −b

c−b
c −b

= ab2c=
p−b
p −b

d−b
d −b

.

After some algebra we conclude

p=
ac+bd−b(acd +b)

d−b2d
=
bdd′+acd′ −abd′ −abc+abd−b2d′

cd′d−b2d′ +b2d−b2c .

Since the pionts d,c,d′ are colinear, according to T1.2 we get
d− c
d − c

=
c−d′
c −d′

= −cd′, and mylti-
plying the third and fourth equality gives

(−cd′)(d−a)(d −b)(d − p)− (d −a)(d−b)(d− p) = 0.

Substituting values for p gives us a polynomial f in d. It is of the most fourth degree and observing
the coefficient next to d4 of the left and right summand we get that the polynomial is of the degree
at most 3. It is obvious that a and b are two of its roots. We will now prove that its third root is d′
and that would imply d = d′. For d = d′ we get

p=
bd′d+acd′ −abc−b2d′

c(d′2−b2) =
ac+bd′

b+d′
, d− p=

d′2−ac
b+d′

d − p = −bd′ d
′2−ac

ac(b+d′)
d−a
d −a

= −d′a, d−b
d −b

= −d′b

and the statement is proved. Thus d = d′ hence the quadrilateral abcd′ is cyclic.

52. Since the rectangles a1b2a2b1, a2b3a3b2, a3b4a4b3, and a4,b1,a1,b4 are cyclic T3 implies that
the numbers

a1−a2
b2−a2

:
a1−b1
b2−b1

,
a2−a3
b3−a3

:
a2−b2
b3−b2

,

a3−a4
b4−a4

:
a3−b3
b4−b3

,
a4−a1
b1−a1

:
a4−b4
b1−b4

,
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are real. The product of the first and the third divided by the product of the second and the fourth is
equal to

a1−a2
a2−a3

· a3−a4
a4−a1

· b2−b1
b3−b2

· b4−b3
b1−b4

,

and since the points a1,a2,a3,a4 lie on a circle according to the theorem 4 the number
a1−a2
a2−a3

·
a3−a4
a4−a1

is real, hence the number
b2−b1
b3−b2

· b4−b3
b1−b4

is real as well. According to T3 the points
b1,b2,b3,b4 are cyclic or colinear.

53. Assume that the origin is the intersection of the diagonals of the parallelogram. Then c = −a
and d = −b. Since the triangles cde and f bc are similar and equally orientged by T4

c−b
b− f =

e−d
d− c ,

hence f =
be+ c2−bc− cd

e−d =
be+a2

e+b
. In order for triangles cde and f ae to be similar and equally

oriented (as well as for f bc and f ae), according to T4 it is necessairy and sufficient that the following
relation holds:

c−d
d− e =

f −a
a− e .

The last equaliy follows from

f −a=
be+a2− ea−ab

e+b
=

(e−a)(b−a)
e+b

,

and c−d = c+b, d− e= −(b+ e), c+b= b−a.

54. Let p= 0 and q= 1. Since ∠mpq= α , according to T1.4 we have that
q− p
q − p = ei2α

m− p
m − p , i.e.

m
m

= ei2α . Since ∠pqm = β , the same theorem implies
m−q
m −q = ei2β

p−q
p −q , i.e. 1 = ei2β

m−1
m −1 .

Solving this system (with the aid of ei2(α+β+γ) = 1) we get m = ei2(α+γ)−1
ei2γ−1 , and symmetrically l =

ei2(β+γ)−1
ei2β−1 , k= ei2(α+β)−1

ei2α−1 .According to T4 in order to prove that the triangles klm and kpq are similar
and equally oriented it is enough to prove that k−ll−m = k−p

p−q = −k. The last follows from

k− l
l−m =

ei(2α+4β )− ei2β − ei(2α+2β ) + ei(2β+2γ) + ei2α −1
(ei2α −1)(ei2β −1)

ei(2β+4γ)− ei2γ − ei(2β+2γ) + ei(2α+2γ) + ei2β −1
(ei2β −1)(ei2γ −1)

=
ei2(α+β )(ei(2β+4γ)− ei2γ − ei(2β+2γ) + ei(2α+2γ) + ei2β −1)

ei(2β+4γ)− ei2γ − ei(2β+2γ) + ei(2α+2γ) + ei2β −1 ·

ei2γ −1
ei2α −1

=
1− ei2(α+β )

ei2α −1 = −k.

Since the triangles kpq,qlp, pqm are mutually similar and equally oriented the same holds for all
four of the triangles.

311
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55. Assume that the coordinates of the vertices of the i-th polygon are denoted by a(i)
1 ,a(i)

2 , . . . ,a(i)
n ,

respectively in positive direction. smeru. According to T6.1 and the given recurrent relation we have
that for each i and k:

a(k+1)
i = 2a(k)

i+k−a
(k)
i ,

where the indices are modulo n. Our goal is to determine the value of a(n)
i , using the values of

a(1)
1 ,a(1)

2 , . . . ,a(1)
n . The following

a(k+1)
i = 2a(k)

i+k−a
(i)
k = 4a(k−1)

i+k+k−1−2a
(k−1)
i+k −2a(k−1)

i+k−1+a
(k−1)
i

= 4(2a(k−2)
i+k+k−1+k−2−−a(k−2)

i+k+k−1)−2(2a
(k−2)
i+k+k−2−a

(k−2)
i+k )−

2(2a(k−2)
i+k−1+k−2−a

(k−2)
i+k−1)+2a(k−2)

i+k−2−a
(k−2)
i

= 8a(k−2)
i+k+k−1+k−2−4(a

(k−2)
i+k+k−1+a

(k−2)
i+k+k−2+a

(k−2)
i+k−1+k−2)+

2(a(k−2)
i+k +a(k−2)

i+k−1+a
(k−2)
i+k−2)−a

(k−2)
i ,

yields that

a(k)
i = 2k−1s(k)k (i)−2k−2s(k)k−1(i)+ . . .+(−1)ks(k)0 (i),

where s(k)j (i) denotes the sum of all the numbers of the form ai+sk( j) and sk( j) is one of the numbers
obtained as the sum of exactly j different natural numbers not greater than n. Here we assume that
s(k)0 (i) = ai. The last formula is easy to prove by induction. Particularly, the formula holds for k = n
hence

a(n)
i = 2n−1s(n)n (i)−2n−2s(n)n−1(i)+ . . .+(−1)ns(n)0 (i).

Now it is possible to prove that s(n)l (i) = s(n)l ( j), for each 1 ≤ l ≤ n− 1 which is not very difficult
problem in the number theory. Since n is prime we have that n+ n− 1+ . . .+ 1 is divisible by n
hence

a(n)
i −a(n)

j = 2n−1a(1)
i+n+n−1+...+1−2n−1a

(1)
j+n+n−1+...+1+

(−1)na(1)
i − (−1)na(1)

j

= (2n−1+(−1)n)(a(1)
i −a(1)

j ),

which by T4 finishes the proof.

56. Assume that the pentagon abcde is inscribed in the unit circle and that x,y, and z are feet of
perpendiculars from a to bc,cd, and de respectively. According to T2.4 we have that

x=
1
2

(

a+b+ c− bc
a

)

, y=
1
2

(

a+ c+d− cd
a

)

, z=
1
2

(

a+d+ e− de
a

)

,

and according to T5 we have

S(xyz) =
i
4

∣

∣

∣

∣

∣

∣

x x 1
y y 1
z z 1

∣

∣

∣

∣

∣

∣

=
i
8

∣

∣

∣

∣

∣

∣

∣

∣

a+b+ c− bc
a a +b + c− bc

a
1

a+ c+d− cd
a a + c+d − cd

a
1

a+d+ e− de
a a +d + e − d e

a
1

∣

∣

∣

∣

∣

∣

∣

∣

.
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Since the determinant is unchanged after substracting some columns from the others, we can sub-
stract the second column from the third, and the first from the second. After that we get

S(xyz) =
i
8

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

a+b+ c− bc
a a +b + c − bc

a
1

(d−b)(a− c)
a

(d−b)(a− c)
bcd

0
(e− c)(a−d)

a
(e− c)(a−d)

a
0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=
i(a− c)(d−b)(a−d)(e− c)

8
·

∣

∣

∣

∣

∣

∣

∣

∣

∣

a+b+ c− bc
a a +b + c − bc

a
1

1
a

1
bcd

0
1
a

1
a

0

∣

∣

∣

∣

∣

∣

∣

∣

∣

,

and finally

S(xyz) =
i(a− c)(d−b)(a−d)(e− c)

8

( 1
acde

− 1
abcd

)

=
i(a− c)(d−b)(a−d)(e− c)(b− e)

8abcde
.

Since the last expression is symmetric with respet to a,b,c,d, and e the given area doesn’t depend
on the choice of the vertex (in this case a).

57. Assume that the unit circle is the circumcircle of the triangle abc. Since
S(bca1)
S(abc)

= 1−
|a−a1|
|a−a′| = 1− a−a1

a−a′ (where a
′ is the foot of the perpendicular from a to bc), the given equality

becomes

2=
a−a1
a−a′ +

b−b1
b−b′ +

c− c1
c− c′ .

According to T2.4 we have a′ =
1
2

(

a+b+ c− bc
a

)

, hence

a−a′ = 1
2

(

a+
bc
a
−b− c

)

=
(a−b)(a− c)

2a

and after writing the symmetric expressions we get

2 =
2a(a−a1)

(a−b)(a− c) +
2b(b−b1)

(b−a)(b− c) +
2c(c− c1)

(c−a)(c−b)

= −2a(a−a1)(b− c)+b(b−b1)(c−a)+ c(c− c1)(a−b)
(a−b)(b− c)(c−a) ,

and after simplying
aa1(b− c)+bb1(c−a)+ cc1(a−b) = 0.

By T4 points a1,b1,c1,h lie on a circle if and only if

a1− c1
a1 − c1

b1−h
b1 −h

=
a1−h
a1 −h

b1− c1
b1 − c1

.
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Since h is the orthocenter by T6.3 we have h= a+b+c, and since aa1 ⊥ bc T1.3 implies
a1−a
a1 −a

=

− b− c
b − c

, i.e. a1 =
bc+aa1−a2

abc
, and symmetrically b1 =

ac+bb1−b2
abc

and c1 =
ab+ cc1− c2

abc
.

Similarly from a1h⊥ bc and b1h⊥ ac

a1−h
a1 −h

= − b− c
b − c

= bc,
b1−h
b1 −h

= − a− c
a − c = ac.

It is enough to prove that

a(a1− c1)
aa1− cc1+(c−a)(a+b+ c)

=
b(b1− c1)

bb1− cc1+(c−b)(a+b+ c)
.

Notice that

a(b− c)a1−a(b− c)c1 = −b1b(c−a)a− cc1(a−b)a−a(b− c)c1= ab(c−a)(c1−b1),

and the result follows by the conjugation.

58. Assume that the unit circle is the circumcircle of the triangle abc. By T2.4 we have that d =
1
2

(

a+b+ c− ab
c

)

, e=
1
2

(

a+b+ c− ac
b

)

, and f =
1
2

(

a+b+ c− bc
a

)

. According to T6.1 we get

a1 =
b+ c
2

(where a1 is the midpoint of the sidebc). Since q belongs to the chord ac T2.2 implies

q =
a+ c−q
ac

, and since qd ‖ e f T1.1 implies q−d
q −d

=
e− f
e − f

= −a2. Solving this system gives us

q=
a3+a2b+abc−b2c

2ab
.

Symmetrically we get r =
a3+a2c+abc−bc2

2ac
. Since p belongs to the chord bc T2.2 implies

p =
b+ c− p
bc

, and from the colinearity of the points e, f , and p from T1.2 we conclude
p− e
p − e =

e− f
e − f

= −a2. After solving this system we get

p =
a2b+a2c+ab2+ac2−b2c−bc2−2abc

2(a2−bc) =
b+ c
2

+
a(b− c)2
2(a2−bc) .

By T4 it is sufficient to prove that

p−a1
p− r

q− r
q−a1

=
p −a1
p − r

q − r
q −a1

.

Since

q− r=
a(c−b)(a2+bc)

2abc
, p−a1 =

a(b− c)2
2(a2−bc) ,

p− r=
(a2− c2)(b2c+abc−a3−a2c)

2ac(a2−bc) , q−a1 =
a3+a2b−b2c−ab2

2ab
the required statement follows by conjugation.

59. Let O be the circumcenter of the triangle abc. We will prove that O is the incenter as well.

Assume that the circumcircle of the triangle abc is unit. According to T6.1 we have that c1 =
a+b
2
,
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b1 =
a+ c
2
, and a1 =

b+ c
2
. Assume that k1,k2,k3 are the given circles with the centers a1,b1, and

c1. Let k1 ∩ k2 = {k,o}, k2 ∩ k3 = {m,o}, and k3 ∩ k1 = {l,o}. Then we have |a1− k| = |a1− o|,
|b1− k| = |b1− o|. After squaring (a1− k)(a1 − k ) = a1a1 and (b1− k)(b1 − k ) = b1b1 . After
solving this system we obtain

k =
(a+ c)(b+ c)

2c
.

Symmetrically we get l=
(b+ c)(a+b)

2b
andm=

(a+ c)(a+b)
2a

. Let∠mko= ϕ . According to T1.4

we have that
o− k
o − k

= ei2ϕ
m− k
m − k

, and since k−m =
b(a2− c2)
2ac

, after conjugation ei2ϕ = −a
b
. If

∠okl= ψ , we have by T1.4
o− k
o − k

= ei2ψ
l− k
l − k

, hence eiψ =−a
b
. Nowwe have ϕ = ψ or ϕ = ψ±π ,

and since the second condition is impossible (why?), we have ϕ = ψ . Now it is clear that o is the
incenter of the triangle klm.
For the second part of the problem assume that the circle is inscribed in the triangle klm is the unit
circle and assume it touches the sides kl,km, lm at u,v,w respectively. According to T7.1 we have
that

k =
2uv
u+ v

, l =
2uw
w+u

, m=
2vw
v+w

.

Let a1 be the circumcenter of the triangle kol. Then according to T9.2 we have

a1 =
kl(k − l )
k l− kl

=
2uvw

k(u+ v)(u+w)

and symmetrically b1 =
2uvw

(u+ v)(v+w)
and c1 =

2uvw
(w+u)(w+ v)

(b1 and c1 are circumcenters of the

triangles kom and mol respectively). Now T6.1 implies

a+b= 2c1, b+ c= 2a1, a+ c= 2b1,

and after solving this system we get a = b1+ c1−a1, b = a1+ c1−b1, and c= a−1+b1− c1. In
order to finish the proof it is enough to establish ab⊥ oc1 (the other can be proved symmetrically),
i.e. by T1.3 that

c1−o
c1 −o

= − a−b
a −b

= − b1−a1
b1 −a1

. The last easily follows from

b1−a1 =
2uvw(u− v)

(u+ v)(v+w)(w+u)
,

by conjugation.

60. Let b and c be the centers of the circles k1 and k2 respectively and assume that bc is the real axis.
If the points m1 and m2 move in the same direction using T1.4 we get that m1 and m2 satisfy

m1−b= (a−b)eiϕ , m2− c= (a− c)eiϕ .

If ω is the requested point, we must have |ω −m1| = |ω −m2|, and after squaring (ω −m1)(ω −
m1 ) = (ω −m2)(ω −m2 ). From the last equation we get

ω =
m1m1 −m2m2 −ω(m1 −m2 )

m1−m2
.

After simplification (with the usage of b = b and c = c where eiϕ = z)

w(1− z) = 2(b+ c)−a− a+az+az − (b+ c)(z+ z)− (1− z)ω .
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Since z =
1
z
, we have

(b+ c−a−w)z2− (2(b+ c)−a− a−ω −ω )z+b+ c− a−ω ≡ 0.

The last polynomial has to be identical to 0 hence each of its coefficients is 0, i.e. ω = b+ c− a .
From the previous relations we conclude that this point satisfies the conditions of the problem.
The problem is almost identical in the case of the oposite orientition.

61. Let γ be the unit circle and let a= −1. Then b= 1, c= 1+2i, and d = −1+2i. Since the points
n,b, p are colinear we can use T1.2 to get

a− p
a − p =

a−m
a −m = −am= m,

and after some algebra p =
p+1−m
m

(1). Since the points c,d, p are colinear using the same
argument we get that

c−n
c −n =

c−d
c −d

= 1,

hence p = p−4i. Comparing this with (1) one gets p= 4i · m
m−1−1. Furthermore, since the points

b,n, p are colinear we have
p−1
p −1

=
1−n
1 −n

= n,

i.e.

n=
m(1−2i)−1
2i+1−m .

Let q′ be the intersection point of the circle γ and the line dm. If we show that the points q′,n,c are
colinear we would have q = q′ and q ∈ γ , which will finish the first part of the problem. Thus our
goal is to find the coordinate of the point q′. Since q′ belongs to the unit circle we have q′q′ = 1, and
since d,m,q′ are colinear, we have using T1.2 that

d−m
d −m

=
q′ −m
q′ −m

= −q′m,

and after simplification

q′ = − m+1−2i
m(1+2i)+1

.

In order to prove that the points q′,n,c are colinear it suffices to show that
q− c
q − c =

n−q
n −q = −nq,

i.e. n=
q−1−2i

(q −1+2i)q
, which is easy to verify. This proves the first part of the problem.

Now we are proving the second part. Notice that the required inequality is equivalent to |q−a| ·
|p− c|= |d− p| · |b−q|. From the previously computed values for p and q, we easily obtain

|q−a|= 2
∣

∣

∣

∣

m+1
m(1+2i)+1

∣

∣

∣

∣

, |p− c|= 2
∣

∣

∣

∣

m(1+ i)+1− i
m(1+2i)+1

∣

∣

∣

∣

,

|d− p | = 2
∣

∣

∣

∣

m+1
m+1

∣

∣

∣

∣

, |b−q|= 2
∣

∣

∣

∣

m(i−1)+1+1
m−1

∣

∣

∣

∣

,

and since −i((i−1)m+1+ i)= m(1+ i)+1− i the required equality obviously holds.
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62. In this problem we have plenty of possibilities for choosing the unit circle. The most convenient
choice is the circumcircle of bcb′c′ (try if you don’t believe). According T2.5 we have that the
intersection point x of bb′ and cc′ satisfy

x=
bb′(c+ c′)− cc′(b+b′)

bb′ − cc′ .

Since bh⊥ cb′ and ch⊥ bc′ T1.3 implies the following two equalities

b−h
b −h

= − b
′ − c
b′ − c

= b′c,
c−h
c −h

= − b− c
′

b − c′
= bc′.

From the first we get h =
bh−b2+b′c

bb′c
, and from the second h =

ch− c2+bc′
bcc′

. After equating the
two relations we get

h=
b′c′(b− c)+b2c′ −b′c2

bc′ −b′c .

Symmetrically we obtain h′ =
bc(b′ − c′)+b′2c−bc′2

b′c−bc′ . It suffices to prove that the points h,h′ and
x are colinear, or after applying T1.2 we have to verify

h−h′
h −h′

=
h− x
h − x

.

The last follwos from

h−h′ =
bc(b′ − c′)+b′c′(b− c)+bc′(b− c′)+b′c(b′ − c)

bc′ −b′c

=
(b+b′ − c− c′)(bc′ +b′c)

bc′ −b′c ,

h− x =
b2b′2c′ +b3b′c′ +b′c2c′2+b′c3c′

(bc′ −b′c)(bb′ − cc′) −

b2b′cc′ +b2b′c′2+bb′c2c′ +b′2c2c′

(bc′ −b′c)(bb′ − cc′)

=
b′c′(b2− c2)(b′ +b− c− c′)

(bc′ −b′c)(bb′ − cc′)
by conjugation.

63. From elementary geometry we know that∠nca=∠mcb (such pointsm and n are called harmonic
conjugates). Let ∠mab= α , ∠abm= β , and ∠mca= γ . By T1.4 we have that

a−b
|a−b| = eiα

a−m
|a−m| ,

a−n
|a−n| = eiα

a− c
|a− c| ,

b− c
|b− c| = eiβ

b−n
|b−n|,

b−m
|b−m| = eiβ

b−a
|b−a|,

c−a
|c−a| = eiγ

c−n
|c−n|,

c−m
|c−m| = eiγ

c−b
|c−b| ,

hence
AM ·AN
AB ·AC +

BM ·BN
BA ·BC +

CM ·CN
CA ·CB

=
(m−a)(n−a)
(a−b)(a− c) +

(m−b)(n−b)
(b−a)(b− c) +

(m− c)(n− c)
(c−a)(c−b) .
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The last expression is always equal to 1 which finishes our proof.

64. Let ∠A= α , ∠B= β , ∠C = γ , ∠D= δ , ∠E = ε , and ∠F = ϕ . Applying T1.4 gives us

b− c
|b− c| = eiβ

b−a
|b−a| ,

d− e
|d− e| = eiδ

d− c
|d− c| ,

f −a
| f −a| = eiϕ

f − e
| f − e| .

Multiplying these equalities and using the given conditions (from the conditions of the problem we
read ei(β+δ+ϕ) = 1) we get

(b− c)(d− e)( f −a) = (b−a)(d− c)( f − e).

From here we can immediately conclude that

(b− c)(a− e)( f −d) = (c−a)(e− f )(d−b),

and the result follows by placing the modulus in the last expression.

65. We first apply the inversion with repsect to the circle ω . The points a,b,c,e,z are fixed, and
the point d is mapped to the intersection of the lines ae and bc. Denote that intersection by s. The
circumcircle of the triangle azd is mapped to the circumcircle of the triangle azs, the line bd is
mapped to the line bd, hence it is sufficient to prove that bd is the tangent to the circle circumscribed
about azs. The last is equivalent to az⊥ sz.
Let ω be the unit circle and let b = 1. According to T6.1 we have c= −1 and e= a =

1
a
. We also

have s=
a+ a
2

=
a2+1
2a

. Since eb⊥ ax using T1.3 we get

a− x
a − x = − e−b

e −b
= −1

a
,

and since the point x belongs to the chord eb by T2.2 it satisfies x =
1+ a− x
a

. Solving this system

gives sistema dobijamo x=
a3+a2+a−1

2a2
. Since y is the midpoint of ax by T6.1

y=
a+ x
2

=
3a3+a2+a−1

4a2
.

Since the points b,y,z are colinear and z belongs to the unit circle according to T1.2 and T2.1 we get

b− y
b − y

=
b− z
b − z

= −z.

After simplifying we get z=
1+3a2

(3+a2)a
. In order to prove that az⊥ zs by T1.3 it is sufficient to prove

that
a− z
a − z = − s− z

s − z .

The last follows from

a− z= a4−1
a(3+a2)

, s− z= a4−2a2+1
2a(3+a2)

,

by conjugation.

66. Assume first that the orthocenters of the given triangles coincide. Assume that the circumcircle
of abc is unit. According to T6.3 we have h = a+ b+ c. Consider the rotation with respect to h
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for the angle ω in the negative direction. The point a1 goes to the point a′1 such that a1, a′1, and h
are colinear. Assume that the same rotation maps b1 to b′1 and c1 to c′1. Since the triangles abc and
a1b1c1 are similar and equally oriented we get that the points b,b′1,h are clinear as well as c,c

′
1,h.

Moreover a′1b′1 ‖ ab (and similarly for b′1c′1 and c′1a′1). Now according to T1.4 eiω (a′1−h) = (a1−h)
(since the rotation is in the negative direction), and since the points a,a′1,h are colinear, according to

T1.2 we have
a′1−h
a−h = λ ∈R. This means that a1 = h+ λeiω(a−h) and analogously

b1 = h+ λeiω(b−h), c1 = h+ λeiω(c−h).

Since the point a1 belongs to the chord bc of the unit circle, by T2.2 we get a1 =
b+ c−a1
bc

. On the

other hand by conjugation of the previous expression for a1 we get a1 = h +λ
a −h
eiω

. Solving for λ
gives

λ =
eiω(a(a+b+ c)+bc)
a(b+ c)(eieω +1)

. (1)

Since λ has the same role in the formulas for b1 also, we must also have

λ =
eiω(b(a+b+ c)+ac)
b(a+ c)(eieω +1)

. (2)

By equating (1) and (2) we get

ab(a+ c)(a+b+ c)+b2c(a+ c)−ab(b+ c)(a+b+ c)−a2c(b+ c)
= (a−b)(ab(a+b+ c)−abc−ac2−bc2) = (a2−b2)(ab− c2).

Since a2 �= b2 we conclude ab= c2. Now we will prove that this is necessair condition for triangle
abc to be equilateral, i.e. |a−b|= |a− c|. After squaring the last expression we get that the triangle

is equilateral if and only if 0=
(a− c)2
ac

− (a−b)2
ab

=
(b− c)(a2−bc)

abc
, and since b �= c, this part of

the problem is solved.
Assume now that the incenters of the given triangles coincide. Assume that the incircle of the
triangle abc is unit and let d,e, f be the points of tangency of the incircle with the sides ab,bc,ca
respectively. Similarly to the previous part of the problem we prove

a1 = i+ λeiω(a− i), b1 = i+ λeiω(b− i), c1 = i+ λeiω(c− i).

Together with the condition i = 0 T2.3 and conjugation imply a1 =
2λ

eiω (e+ f )
. Also, since the

points a1,b,c are colinear we have a1d ⊥ di hence according to T1.3 a1−d
a1 −d

= − d− i
d − i

= −d2.
Solving this system gives

λ =
d(e+ f )
d2+ e f eiω

.

Since λ has the same roles in the formulas for a1 and b1 we must have

λ =
e(d+ f )
e2+d f eiω

,

and equating gives us

ei2ω =
ed(e+d+ f )
f (de+ e f + f d)

.
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Symmetry implies ei2ω =
e f (e+d+ f )
d(de+ e f + f d)

and since f 2 �= d2 we must have e+d+ f = 0. It is easy

to prove that the triangle de f is equilateral in this case as well as abc.

67. Since (a−b)(c−d)+(b−c)(a−d)= (a−c)(b−d) the triangle inequality implies |(a−b)(c−
d)|+ |(b− c)(a− d)| ≥ |(a− c)(b− d)|, which is exactly an expression of the required inequality.
The equality holds if and only if the vectors (a− b)(c− d), (b− c)(a− d), and (a− c)(c− d) are
colinear. The first two of them are colinear if and only if

(a−b)(c−d)
(b− c)(a−d) ∈ R,

which is according to T3 precisely the condition that a,c,b,d belong to a circle. Similarly we prove
that the other two vectors are colinear.

68. Since (d−a)(d−b)(a−b)+(d−b)(d−c)(b−c)+(d−c)(d−a)(c−a)= (a−b)(b−c)(c−a),
we have |(d− a)(d− b)(a− b)|+ |(d− b)(d− c)(b− c)|+ |(d− c)(d− a)(c− a)| ≥ |(a− b)(b−
c)(c− a)| where the equality holds if and only if (d− a)(d− b)(a− b),(d− b)(d− c)(b− c),(d−
c)(d−a)(c−a) and (a−b)(b− c)(c−a) are colinear. The condition for colinearity of the first two
vectors can be expressed as

(d−a)(a−b)
(d− c)(b− c) =

(d −a)(a −b)
(d − c)(b − c)

.

Assume that the circumcircle of abc is unit. Now the given expression can be written as

dd a−a2d − da
c

+
a2

c
= dd c− c2d − dc

a
+
c2

a

and after some algebra dd (a− c) = (a− c)
(

(a+ c)
(

d +
d
ac

− a+ c
ac

)

+1
)

or

dd = (a+ c)
(

d +
d
ac

− a+ c
ac

)

+1.

Similarly, from the colinearity of the first and the third vector we get dd = (b+ c)
(

d +
d
bc

−
b+ c
bc

)

+1. Substracting the last two expressions yields (a−b)
(

d − d
ab

+
c2−ab
abc

)

= 0, i.e.

d − d
ab

+
c2−ab
abc

= 0.

Similarly d − d
ac

+
b2−ac
abc

= 0 and after substracting and simplifying we get d = a+ b+ c. It is
easy to verify that for d = a+ b+ c, i.e. the orthocenter of the triangle abc, all four of the above
mentioned vectors colinear.

13 Problems for Indepent Study
For those who want more, here is the more. Many of the following problems are similar to the
problems that are solved above. There are several quite difficult problems (towards the end of the
list) which require more attention in choosing the known points, and more time. As in the case with
solved problems, I tried to put lot of problems from math competitions from all over the world.

1. (Regional competition 2002, 2nd grade) In the acute-angled triangle ABC, B′ and C′ are feet of
perpendiculars from the vertices B andC respectively. The circle with the diameter AB intersects the
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line CC′ at the points M and N, and the circle with the diameter AC intersects the line BB′ at P and
Q. Prove that the quadrilateralMPNQ is cyclic.

2. (Yug TST 2002) Let ABCD be a quadrilateral such that ∠A= ∠B= ∠C. Prove that the point D,
the circumcenter, and the orthocenter of�ABC are colinear.

3. (Republic competition 2005, 4th grade) The haxagon ABCDEF is inscribed in the circle k. If
the lengths of the segments AB,CD, and EF are equal to the radius of the circle k prove that the
midpoints of the remaining three edges form an equilateral trinagle.

4. (USA 1997) Three isosceles triangles BCD, CAE, and ABF with the bases BC, CA, and AB
respectively are constructed in the exterior of the triangle ABC. Prove that the perpendiculars from
A, B, andC to the lines EF , FD, and DE repsectively are concurrent.

5. Prove that the side length of the regular 9-gon is equal to the difference of the largest and the
smallest diagonal.

6. If h1,h2, . . . ,h2n denote respectively the distances of an arbitrary point P of the circle k circum-
scribed about the polygon A1A2 . . .A2n from the lines that contain the edges A1A2, A2A3, . . ., A2nA1,
prove that h1h3 · · ·h2n−1 = h2h4 · · ·h2n.

7. Let d1,d2, . . . ,dn denote the distances of the vertices A1,A2, . . . ,An of the regular n-gon A1A2 . . .An
from an arbitrary point P of the smaller arc A1An of the circumcircle. Prove that

1
d1d2

+
1
d2d3

+ . . .+
1

dn−1dn
=

1
d1dn

.

8. Let A0A1 . . .A2n be a regular polygon, P a point of the smaller arc A0A2n of the circumcircle and
m an integer such that 0≤ m< n. Prove that

n

∑
k=0
PA2m+1
2k =

n

∑
k=1
PA2m+1
2k−1 .

9. (USA 2000) Let ABCD be a cyclic quadrilateral and let E and F be feet of perpendiculars from
the intersection of the diagonals to the lines AB andCD respectively. Prove that EF if perpendicular
to the line passing through the midpoints of AD and BC.

10. Prove that the midpoints of the altitudes of the traingle are colinear if and only if the triangle is
rectangular.

11. (BMO 1990) The feet of preprendiculars of the acute angled triangle ABC are A1, B1, andC1. If
A2, B2, and C2 denote the points of tangency of the incircle of �A1B1C1 prove that the Euler lines
of the triangles ABC and A2B2C2 coincide.

12. (USA 1993) Let ABCD be a convex quadrilateral whose diagonals AC and BD are perpendicular.
Assume that AC∪BD=E . Prove that the points symmetric to E with respect to the lines AB,BC,CD,
and DA form a cyclic quadrilateral.

13. (India 1998) Let AK,BL,CM be the altitudes of the triangle ABC, and let H be its orthocenter.
Let P be the midpoint of the segment AH. If BH andMK intersect at the point S, and LP and AM in
the point T , prove that TS is perpendicular to BC.

14. (Vietnam 1995) Let AD, BE , and CF be the altitudes of the triangle �ABC. For each k ∈ R,
k �= 0, let A1, B1, andC1 be such that AA1 = kAD, BB1 = kBE , andCC1 = kCF . Find all k such that
for every non-isosceles triangle ABC the triangles ABC and A1B1C1 are similar.
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15. (Iran 2005) Let ABC be a triangle and D,E,F the points on its edges BC, CA, AB respectively
such that

BD
DC

=
CE
EA

=
AF
FB

=
1−λ

λ
where λ is a real number. Find the locus of circumcenters of the trianglesDEF as λ ∈R.

16. Let H1 and H2 be feet of perpendiculars from the orthocenter H of the triangle ABC to the
bisectors of external and internal angles at the vertex C. Prove that the line H1H2 contains the
midpoint of the side AB.

17. Given an acute-angled triangle ABC and the point D in its interior, such that ∠ADB= ∠ACB+
90◦ and AB ·CD= AD ·BC. Find the ratio

AB ·CD
AC ·BD .

18. The lines AM and AN are tangent to the circle k, and an arbitrary line through A intersects k at
K and L. Let l be an arbitrary line parallel to AM. Assume that KM and LM intersect the line l at P
and Q, respectively. Prove that the lineMN bisects the segment PQ.

19. The points D, E , and F are chosen on the edges BC, CA, and AB of the triangle ABC in such a
way that BD=CE = AF . Prove that the triangles ABC and DEF have the common incenter if and
only if ABC is equilateral.

20. Given a cyclic quadrilateral ABCD, prove that the incircles of the triangles ABC, BCD, CDA,
DAB form an rectangle.

21. (India 1997) Let I be the incenter of the triangle ABC and let D and E be the midpoints of the
segments AC and AB respectively. Assume that the lines AB and DI intersect at the point P, and the
lines AC and EI at the point Q. Prove that AP ·AQ= AB ·AC if and only if ∠A= 60◦.

22. LetM be an interior point of the square ABCD. Let A1,B1,C1,D1 be the intersection of the lines
AM,BM,CM,DM with the circle circumscribed about the square ABCD respectively. Prove that

A1B1 ·C1D1 = A1D1 ·B1C1.

23. Let ABCD be a cyclic quadrilateral, F = AC∩ BD and E = AD∩BC. If M and N are the
midpoints of the segments AB andCD prove that

MN
EF

=
1
2
·
∣

∣

∣

∣

AB
CD

− CD
AB

∣

∣

∣

∣

.

24. (Vietnam 1994) The points A′, B′, andC′ are symmetric to the points A, B, andC with respect to
the lines BC,CA, and AB respectively. What are the conditions that�ABC has to satisfy in order for
�A′B′C′ to be equilateral?

25. Let O be the circumcenter of the triangle ABC and let R be its circumradius. The incircle of the
triangle ABC touches the sides BC,CA,AB, at A1,B1,C1 and its radius is r. Assume that the lines
determined by the midpoints of AB1 and AC1, BA1 and BC1, CA1 and CB1 intersect at the points
C2, A2, and B2. Prove that the circumcenter of the triangle A2B2C2 coincides with O, and that its
circumradius is R+

r
2
.

26. (India 1994) Let ABCD be a nonisosceles trapezoid such that AB ‖CD and AB>CD. Assume
that ABCD is circumscribed about the circle with the center I which tangets CD in E . Let M be the
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midpoint of the segment AB and assume that MI and CD intersect at F . Prove that DE = FC if and
only if AB= 2CD.

27. (USA 1994) Assume that the hexagon ABCDEF is inscribed in the circle, AB=CD= EF , and
that the diagonals AD, BE , and CF are concurrent. If P is the intersection of the lines AD and CE ,

prove that
CP
PE

=
(AC
CE

)2
.

28. (Vietnam 1999) Let ABC be a troiangle. The points A′, B′, and C′ are the midpoints of the
arcs BC, CA, and AB, which don’t contain A, B, and C, respectively. The lines A′B′, B′C′, and C′A′
partition the sides of the triangle into six parts. Prove that the ”middle” parts are equal if and only if
the triangle ABC is equilateral.

29. (IMO 1991 shortlist) Assume that in �ABC we have ∠A = 60◦ and that IF is parallel to AC,
where I is the incenter and F belongs to the line AB. The point P of the segment BC is such that
3BP= BC. Prove that ∠BFP= ∠B/2.

30. (IMO 1997 shortlist) The angle A is the smallest in the triangle ABC. The points B andC divide
the circumcircle into two arcs. LetU be the interior point of the arc between B andC which doesn’t
contain A. The medians of the segments AB and AC intersect the line AU respectively at the points
V andW . The lines BV andCW intersect at T . Prove that AU = TB+TC.

31. (Vietnam 1993) Let ABCD be a convex quadrilateral such that AB is not parallel to CD and
AD is not parallel to BC. The points P, Q, R, and S are chosen on the edges AB, BC, CD, and DA,
respectively such that PQRS is a parallelogram. Find the locus of centroids of all such quadrilaterals
PQRS.

32. The incircle of the triangle ABC touches BC, CA, AB at E,F,G respectively. Let AA1, BB1,
CC1 the angular bisectors of the triangle ABC (A1, B1, C1 belong to the corresponding edges). Let
KA,KB,KC respectively be the points of tangency of the other tangents to the incircle from A1, B1,
C1. Let P,Q,R be the midpoints of the segments BC, CA, AB. Prove that the lines PKA, QKB, RKC
intersect on the incircle of the triangle ABC.

33. Assume that I and Ia are the incenter and the excenter corresponding to the edge BC of the trian-
gle ABC. Let IIa intersect the segment BC and the circumcircle of �ABC at A1 and M respectively
(M belongs to Ia and I) and let N be the midpoint of the arc MBA which contains C. Assume that S
and T are intersections of the lines NI and NIa with the circumcircle of�ABC. Prove that the points
S, T , and A1 are colinear.

34. (Vietnam 1995) Let AD,BE,CF be the altitudes of the triangle ABC, and let A′,B′,C′ be the
points on the altitudes such that

AA′

AD
=
BB′

BE
=
CC′

CF
= k.

Find all values for k such that�A′B′C′ ∼ �ABC.

35. Given the triangle ABC and the point T , let P and Q be the feet of perpendiculars from T to the
lines AB and AC, respectively and let R and S be the feet of perpendiculars from A to the lines TC
and TB, respectively. Prove that the intersection point of the lines PR andQS belongs to the line BC.

36. (APMO 1995) Let PQRS be a cyclic quadrilateral such that the lines PQ and RS are not parallel.
Consider the set of all the circles passing through P and Q and all the circles passing through R and
S. Determine the set of all points A of tangency of the circles from these two sets.

37. (YugMO 2003, 3-4 grade) Given a circle k and the point P outside of it. The variable line s
which contains point P intersects the circle k at the points A and B. LetM and N be the midpoints of
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the arcs determined by the points A and B. IfC is the point of the segment AB such that

PC2 = PA ·PB,

prove that the measure of the angle ∠MCN doesn’t depend on the choice of s.

38. (YugMO 2002, 2nd grade) Let A0,A1,...,A2k, respectevly be the points which divide the circle
into 2k+ 1 congruent arcs. The point A0 is connected by the chords to all other points. Those 2k
chords divide the circle into 2k+1 parts. Those parts are colored alternatively in white and black in
such a way that the number of white parts is by 1 bigger than the number of black parts. Prove that
the surface area of teh black part is greater than the surface area of the white part.

39. (Vietnam 2003) The circles k1 and k2 touch each other at the point M. The radius of the circle
k1 is bigger than the radius of the circle k2. Let A be an arbitrary point of k2 which doesn’t belong
to the line connecting the centers of the circles. Let B andC be the points of k1 such that AB and AC
are its tangents. The lines BM andCM intersect k2 again at E and F respectively. The point D is the
intersection of the tangent at A with the line EF . Prove that the locus of points D (as A moves along
the circle) is a line.

40. (Vietnam 2004) The circles k1 and k2 are given in the plane and they intersect at the points A
and B. The tangents to k1 at those points intersect at K. Let M be an arbitrary point of the circle k1.
Assume that MA∪ k2 = {A,P}, MK∪ k1 = {M,C}, and CA∪ k1 = {A,Q}. Prove that the midpoint
of the segment PQ belongs to the line MC and that PQ passes through a fixed point as M moves
along k1.

41. (IMO 2004 shortlist) Let A1A2 . . .An be a regular n-gon. Assume that the points B1, B2, . . ., Bn−1
are determined in the following way:

• for i= 1 or i= n−1, Bi is the midpoint of the segment AiAi+1;

• for i �= 1, i �= n−1, and S intersection of A1Ai+1 and AnAi, Bi is the intersection of the bisectors
of the angle AiSi+1 with AiAi+1.

Prove that ∠A1B1An+∠A1B2An+ . . .+∠A1Bn−1An = 180◦.
69. (Dezargue’s Theorem) The triangles are perspective with respect to a point if and only if they
are perspective w.r.t to a line.

42. (IMO 1998 shortlist) Let ABC be a triangle such that ∠ACB= 2∠ABC. Let D be the point of the
segment BC such that CD = 2BD. The segment AD is extended over the point D to the point E for
which AD= DE . Prove that

∠ECB+180◦ = 2∠EBC.

43. Given a triangle A1A2A3 the line p passes through the point P and intersects the segments
A2A3,A3A1,A1A2 at the points X1,X2,X3, respectively. Let AiP intersect the circumcircle of A1A2A3
at Ri, for i= 1,2,3. Prove that X1R1,X2R2,X3R3 intersect at the point that belongs to the circumcircle
of the triangle A1A2A3.

44. The points O1 and O2 are the centers of the circles k1 and k2 that intersect. Let A be one of the
intersection points of these circles. Two common tangents are constructed to these circles. BC are
EF the chords of these circles with endpoints at the points of tangency of the common chords with
the circles (C and F are further from A). If M and N are the midpoints of the segments BC and EF ,
prove that ∠O1AO2 = ∠MAN = 2∠CAF .

45. (BMO 2002) Two circles of different radii intersect at points A and B. The common chords of
these circles are MN and ST respectively. Prove that the orthocenters of �AMN, �AST , �BMN,
and�BST form a rectangle.
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46. (IMO 2004 shortlist) Given a cyclic quadrilateral ABCD, the lines AD and BC intersect at E
whereC is between B and E . The diagonals AC and BD intersect at F. LetM be the midpoint ofCD
and let N �= M be the point of the circumcircle of the triangle ABM such that AN/BN = AM/BM.
Prove that the points E,F,N are colinear.

47. (IMO 1994 shortlist) The diameter of the semicircle Γ belongs to the line l. Let C and D be the
points on Γ. The tangents to Γ at C and D intersect the line l respectively at B and A such that the
center of the semi-circle is between A and B. Let E be the intersection of the lines AC and BD, and
F the foot of perpendicular from E to l. Prove that EF is the bisector of the angle ∠CFD.
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Inversion
Dušan Djukić
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1 General Properties
InversionΨ is a map of a plane or space without a fixed pointO onto itself, determined by a circle k
with center O and radius r, which takes point A �= O to the point A′ = Ψ(A) on the ray OA such that
OA ·OA′ = r2. From now on, unless noted otherwise, X ′ always denotes the image of object X under
a considered inversion.
Clearly, mapΨ is continuous and inverse to itself, and maps the interior and exterior of k to each

other, which is why it is called “inversion”. The next thing we observe is that�P′OQ′ ∼ �QOP for
all point P,Q �= O (for ∠P′OQ′ = ∠QOP and OP′/OQ′ = (r2/OP)/(r2/OQ) = OQ/OP), with the
ratio of similitude r2

OP·OQ . As a consequence, we have

∠OQ′P′ = ∠OPQ and P′Q′ =
r2

OP ·OQPQ.

What makes inversion attractive is the fact that it maps lines and circles into lines and circles.
A line through O (O excluded) obviously maps to itself. What if a line p does not contain O? Let
P be the projection of O on p and Q ∈ p an arbitrary point of p. Angle ∠OPQ= ∠OQ′P′ is right,
so Q′ lies on circle k with diameter OP′. Therefore Ψ(p) = k and consequently Ψ(k) = p. Finally,
what is the image of a circle k not passing through O? We claim that it is also a circle; to show
this, we shall prove that inversion takes any four concyclic points A,B,C,D to four concyclic points
A′,B′,C′,D′. The following angles are regarded as oriented. Let us show that ∠A′C′B′ = ∠A′D′B′.
We have ∠A′C′B′ = ∠OC′B′ −∠OC′A′ = ∠OBC−∠OAC and analogously ∠A′D′B′ = ∠OBD−
∠OAD, which implies ∠A′D′B′ −∠A′C′B′ = ∠CBD−∠CAD= 0, as we claimed. To sum up:

• A line through O maps to itself.

• A circle through O maps to a line not containing O and vice-versa.

• A circle not passing through O maps to a circle not passing through O (not necessarily the
same).

Remark. Based on what we have seen, it can be noted that inversion preserves angles between curves,
in particular circles or lines. Maps having this property are called conformal.
When should inversion be used? As always, the answer comes with experience and cannot be

put on a paper. Roughly speaking, inversion is useful in destroying “inconvenient” circles and angles
on a picture. Thus, some pictures “cry” to be inverted:
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• There are many circles and lines through the same point A. Invert through A.

Problem 1 (IMO 2003, shortlist). Let Γ1,Γ2,Γ3,Γ4 be distinct circles such that Γ1,Γ3 are exter-
nally tangent at P, and Γ2,Γ4 are externally tangent at the same point P. Suppose that Γ1 and Γ2; Γ2
and Γ3; Γ3 and Γ4; Γ4 and Γ1 meet at A,B,C,D, respectively, and that all these points are different
from P. Prove that

AB ·BC
AD ·DC =

PB2

PD2
.

Solution. Apply the inversion with center at P and radius r; let ̂X denote the image of X . The circles
Γ1,Γ2,Γ3,Γ4 are transformed into lines ̂Γ1,̂Γ2,̂Γ3,̂Γ4, where ̂Γ1 ‖ ̂Γ3 and ̂Γ2 ‖ ̂Γ4, and therefore

̂ÂB̂ĈD is a parallelogram. Further, we have AB =
r2

P̂A ·P̂B
̂ÂB, PB =

r2

P̂B
, etc. The equality to be

proven becomes
P̂D2

P̂B2
·

̂ÂB · ̂B̂C
̂ÂD · ̂D̂C

=
P̂D2

P̂B2
,

which holds because ̂ÂB= ̂ĈD and ̂B̂C = ̂D̂A. �

• There are many angles ∠AXB with fixed A,B. Invert through A or B.

Problem 2 (IMO 1996, problem 2). Let P be a point inside �ABC such that ∠APB−∠C =
∠APC−∠B. Let D,E be the incenters of �APB,�APC respectively. Show that AP, BD, and
CE meet in a point.

Solution. Apply an inversion with center at A and radius r. Then the given condition becomes
∠B′C′P′ = ∠C′B′P′, i.e., B′P′ = P′C′. But P′B′ = r2

AP·ABPB, so AC/AB= PC/PB. �
Caution: Inversion may also bring new inconvenient circles and angles. Of course, keep in mind

that not all circles and angles are inconvenient.

2 Problems
1. Circles k1,k2,k3,k4 are such that k2 and k4 each touch k1 and k3. Show that the tangency points
are collinear or concyclic.

2. Prove that for any points A,B,C,D, AB ·CD+BC ·DA ≥ AC ·BD, and that equality holds if
and only if A,B,C,D are on a circle or a line in this order. (Ptolemy’s inequality)

3. Let ω be the semicircle with diameter PQ. A circle k is tangent internally to ω and to segment
PQ at C. Let AB be the tangent to k perpendicular to PQ, with A on ω and B on segmentCQ.
Show that AC bisects the angle ∠PAB.

4. Points A,B,C are given on a line in this order. Semicircles ω ,ω1,ω2 are drawn on AC,AB, BC
respectively as diameters on the same side of the line. A sequence of circles (kn) is constructed
as follows: k0 is the circle determined by ω2 and kn is tangent to ω ,ω1,kn−1 for n≥ 1. Prove
that the distance from the center of kn to AB is 2n times the radius of kn.

5. A circle with centerO passes through points A andC and intersects the sides AB and BC of the
triangle ABC at points K and N, respectively. The circumscribed circles of the triangles ABC
and KBN intersect at two distinct points B andM. Prove that �OMB= 90◦. (IMO 1985-5.)

6. Let p be the semiperimeter of a triangle ABC. Points E and F are taken on line AB such
that CE =CF = p. Prove that the circumcircle of�EFC is tangent to the excircle of�ABC
corresponding to AB.
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7. Prove that the nine-point circle of triangle ABC is tangent to the incircle and all three excircles.
(Feuerbach’s theorem)

8. The incircle of a triangle ABC is tangent to BC,CA,AB atM,N and P, respectively. Show that
the circumcenter and incenter of�ABC and the orthocenter of�MNP are collinear.

9. Points A,B,C are given in this order on a line. Semicircles k and l are drawn on diameters AB
and BC respectively, on the same side of the line. A circle t is tangent to k, to l at point T �=C,
and to the perpendicular n to AB throughC. Prove that AT is tangent to l.

10. Let A1A2A3 be a nonisosceles triangle with incenter I. Let Ci, i= 1,2,3, be the smaller circle
through I tangent to AiAi+1 and AiAi+2 (the addition of indices being mod 3). Let Bi, i= 1,2,3,
be the second point of intersection of Ci+1 and Ci+2. Prove that the circumcenters of the
triangles A1B1I,A2B2I,A3B3I are collinear. (IMO 1997 Shortlist)

11. If seven vertices of a hexahedron lie on a sphere, then so does the eighth vertex.

12. A sphere with center on the plane of the face ABC of a tetrahedron SABC passes through A,B
and C, and meets the edges SA,SB,SC again at A1,B1,C1, respectively. The planes through
A1,B1,C1 tangent to the sphere meet at a point O. Prove that O is the circumcenter of the
tetrahedron SA1B1C1.

13. Let KL and KN be the tangents from a point K to a circle k. Point M is arbitrarily taken on
the extension of KN past N, and P is the second intersection point of k with the circumcircle
of triangle KLM. The point Q is the foot of the perpendicular from N to ML. Prove that
∠MPQ= 2∠KML.

14. The incircle Ω of the acute-angled triangle ABC is tangent to BC at K. Let AD be an altitude
of triangle ABC and let M be the midpoint of AD. If N is the other common point of Ω and
KM, prove thatΩ and the circumcircle of triangle BCN are tangent at N. (IMO 2002 Shortlist)

3 Solutions
1. Let k1 and k2, k2 and k3, k3 and k4, k4 and k1 touch at A,B,C,D, respectively. An inversion
with center A maps k1 and k2 to parallel lines k′1 and k

′
2, and k3 and k4 to circles k

′
3 and k

′
4

tangent to each other atC′ and tangent to k′2 at B′ and to k′4 at D′. It is easy to see that B′,C′,D′

are collinear. Therefore B,C,D lie on a circle through A.

2. Applying the inversion with center A and radius r gives AB= r2
AB′ ,CD= r2

AC′·AD′C′D′, etc. The
required inequality reduces to C′D′ +B′C′ ≥ B′D′.

3. Invert through C. Semicircle ω maps to the semicircle ω ′ with diameter P′Q′, circle k to the
tangent to ω ′ parallel to P′Q′, and line AB to a circle l centered on P′Q′ which touches k (so
it is congruent to the circle determined by ω ′). Circle l intersects ω ′ and P′Q′ in A′ and B′
respectively. Hence P′A′B′ is an isosceles triangle with ∠PAC= ∠A′P′C = ∠A′B′C = ∠BAC.

4. Under the inversion with center A and squared radius AB ·AC points B and C exchange posi-
tions, ω and ω1 are transformed to the lines perpendicular to BC atC and B, and the sequence
(kn) to the sequence of circles (k′n) inscribed in the region between the two lines. Obviously,
the distance from the center of k′n to AB is 2n times its radius. Since circle kn is homothetic to
k′n with respect to A, the statement immediately follows.

5. Invert through B. Points A′,C′,M′ are collinear and so are K′,N′,M′, whereas A′,C′,N′, K′

are on a circle. What does the center O of circle ACNK map to? Inversion does not preserve
centers. Let B1 and B2 be the feet of the tangents from B to circle ACNK. Their images B′1 and
B′2 are the feet of the tangents from B to circle A′C′N′K′, and since O lies on the circle BB1B2,
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its image O′ lies on the line B′1B′2 - more precisely, it is at the midpoint of B′1B′2. We observe
thatM′ is on the polar of point B with respect to circle A′C′N′K′, which is nothing but the line
B1B2. It follows that ∠OBM = ∠BO′M′ = ∠BO′B′1 = 90◦.

6. The inversion with centerC and radius p maps points E and F and the excircle to themselves,
and the circumcircle of �CEF to line AB which is tangent to the excircle. The statement
follows from the fact that inversion preserves tangency.

7. We shall show that the nine-point circle ε touches the incircle k and the excircle ka across A.
Let A1,B1,C1 be the midpoints of BC,CA,AB, and P,Q the points of tangency of k and ka with
BC, respectively. Recall that A1P = A1Q; this implies that the inversion with center A1 and
radius A1P takes k and ka to themselves. This inversion also takes ε to a line. It is not difficult
to prove that this line is symmetric to BC with respect to the angle bisector of∠BAC, so it also
touches k and ka.

8. The incenter of �ABC and the orthocenter of �MNP lie on the Euler line of the triangle
ABC. The inversion with respect to the incircle of ABC maps points A,B,C to the midpoints
of NP,PM,MN, so the circumcircle of ABC maps to the nine-point circle of�MNP which is
also centered on the Euler line of MNP. It follows that the center of circle ABC lies on the
same line.

9. An inversion with center T maps circles t and l to parallel lines t ′ and l′, circle k and line n to
circles k′ and n′ tangent to t ′ and l′ (where T ∈ n′), and line AB to circle a′ perpendicular to l′
(because an inversion preserves angles) and passes through B′,C′ ∈ l′; thus a′ is the circle with
diameter B′C′. Circles k′ and n′ are congruent and tangent to l′ at B′ andC′, and intersect a′ at
A′ and T respectively. It follows that A′ and T are symmetric with respect to the perpendicular
bisector of B′C′ and hence A′T ‖ l′, so AT is tangent to l.

10. The centers of three circles passing through the same point I and not touching each other are
collinear if and only if they have another common point. Hence it is enough to show that the
circles AiBiI have a common point other than I. Now apply inversion at center I and with
an arbitrary power. We shall denote by X ′ the image of X under this inversion. In our case,
the image of the circle Ci is the line B′i+1B

′
i+2 while the image of the line Ai+1Ai+2 is the

circle IA′i+1A′i+2 that is tangent to B′iB′i+2, and B′iB′i+2. These three circles have equal radii,
so their centers P1,P2,P3 form a triangle also homothetic to �B′1B′2B′3. Consequently, points
A′1,A

′
2,A

′
3, that are the reflections of I across the sides of P1P2P3, are vertices of a triangle also

homothetic to B′1B′2B′3. It follows that A′1B′1,A′2B′2,A′3B′3 are concurrent at some point J′, i.e.,
that the circles AiBiI all pass through J.

11. Let AYBZ,AZCX ,AXDY,WCXD,WDYB,WBZC be the faces of the hexahedron, where A is
the “eighth” vertex. Apply an inversion with centerW . Points B′,C′,D′, X ′,Y ′,Z′ lie on some
plane π , and moreover,C′,X ′,D′; D′,Y ′,B′; and B′,Z′,C′ are collinear in these orders. Since
A is the intersection of the planes YBZ,ZCX ,XDY , point A′ is the second intersection point of
the spheresWY ′B′Z′,WZ′C′X ′,WX ′D′Y ′. Since the circles Y ′B′Z′,Z′C′X ′, X ′D′Y ′ themselves
meet at a point on plane π , this point must coincide with A′. Thus A′ ∈ π and the statement
follows.

12. Apply the inversion with center S and squared radius SA · SA1 = SB · SB1 = SC · SC1. Points
A and A1, B and B1, and C and C1 map to each other, the sphere through A,B,C,A1,B1,C1
maps to itself, and the tangent planes at A1,B1,C1 go to the spheres through S and A, S and
B, S and C which touch the sphere ABCA1B1C1. These three spheres are perpendicular to
the plane ABC, so their centers lie on the plane ABC; hence they all pass through the point
S symmetric to S with respect to plane ABC. Therefore S is the image of O. Now since
∠SA1O= ∠SSA= ∠SSA= ∠OSA1, we have OS = OA1 and analogously OS =OB1 = OC1.
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Dušan Djukić: Inversion 5

13. Apply the inversion with centerM. LineMN′ is tangent to circle k′ with centerO′, and a circle
through M is tangent to k′ at L′ and meets MN′ again at K′. The line K′L′ intersects k′ at P′,
and N′O′ intersectsML′ at Q′. The task is to show that ∠MQ′P′ = ∠L′Q′P′ = 2∠K′ML′.
Let the common tangent at L′ intersect MN′ at Y ′. Since the peripheral angles on the chords
K′L′ and L′P′ are equal (to ∠K′L′Y ′), we have ∠L′O′P′ = 2∠L′N′P′ = 2∠K′ML′. It only
remains to show that L′,P′,O′,Q′ are on a circle. This follows from the equality ∠O′Q′L′ =
90◦−∠L′MK′ = 90◦−∠L′N′P′ = ∠O′P′L′ (the angles are regarded as oriented).

14. Let k be the circle through B,C that is tangent to the circle Ω at point N′. We must prove
that K,M,N′ are collinear. Since the statement is trivial for AB = AC, we may assume that
AC > AB. As usual, R,r,α,β ,γ denote the circumradius and the inradius and the angles of
�ABC, respectively.

We have tan∠BKM =DM/DK. Straightforward calculation gives DM =
1
2
AD= Rsinβ sinγ

and DK =
DC−DB

2
− KC−KB

2
= Rsin(β − γ)−R(sinβ − sinγ) = 4Rsin

β − γ
2

sin
β
2
sin

γ
2
,

so we obtain
tan∠BKM =

sinβ sinγ
4sin β−γ

2 sin β
2 sin

γ
2

=
cos β

2 cos
γ
2

sin β−γ
2

.

To calculate the angle BKN′, we apply the in-
version ψ with center at K and power BK ·
CK. For each object X , we denote by ̂X its
image under ψ . The incircle Ω maps to a

KB C

A

k

Ω

N

−→
ψ

̂B ̂ĈU

̂N ̂Ω

K

̂k

line ̂Ω parallel to ̂B̂C, at distance
BK ·CK
2r

from ̂B̂C. Thus the point ̂N′ is the projection of the

midpoint ̂U of ̂B̂C onto ̂Ω. Hence

tan∠BKN′ = tan∠̂BK ̂N′ =
̂U ̂N′

̂UK
=

BK ·CK
r(CK−BK)

.

Again, one easily checks that KB ·KC = bcsin2 α
2 and r = 4Rsin

α
2
· sin β

2
· sin γ

2
, which im-

plies

tan∠BKN′ =
bcsin2 α

2
r(b− c)

=
4R2 sinβ sinγ sin2 α

2

4Rsin α
2 sin

β
2 sin

γ
2 ·2R(sinβ − sinγ)

=
cos β

2 cos
γ
2

sin β−γ
2

.

Hence ∠BKM = ∠BKN′, which implies that K,M,N′ are indeed collinear; thus N′ ≡ N.
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1 Cross Ratio. Harmonic Conjugates. Perspectivity. Projectivity
Definition 1. Let A, B, C, and D be colinear points. The cross ratio of the pairs of points (A,B) and
(C,D) is

R(A,B;C,D) =

−→
AC
−→CB

:
−→
AD
−→DB

. (1)

Let a, b, c, d be four concurrent lines. For the
given lines p1 and p2 let us denote Ai = a∩ pi,
Bi = b∩ pi, Ci = c∩ pi, Di = d∩ pi, for i= 1, 2.
Then

R(A1,B1;C1,D1) = R(A2,B2;C2,D2). (2)
A1 B1C1 D1

A2 B2
C2

D2
O

Thus it is meaningful to define the cross ratio
of the pairs of concurrent points as

R(a,b;c,d) = R(A1,B1;C1,D1). (3)

Assume that pointsO1, O2, A, B,C, D belong
to a circle. Then

R(O1A,O1B;O1C,O1D)

= R(O2A,O2B;O2C,O2D). (4)
A

BC

D

O1

O2

Hence it is meaningful to define the cross-ratio for cocyclic points as

R(A,B;C,D) = R(O1A,O1B;O1C,O1D). (5)
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Assume that the points A, B, C, D are colin-
ear or cocyclic. Let an inversion with center O
maps A, B, C, D into A∗, B∗,C∗, D∗. Then

R(A,B;C,D) = R(A∗,B∗;C∗,D∗). (6)
O A

B

C

D

A∗

B∗
C∗

D∗

Definition 2. Assume that A, B, C, and D are cocyclic or colinear points. Pairs of points (A,B) and
(C,D) are harmonic conjugates if R(A,B;C,D) = −1. We also write H (A,B;C,D) when we want
to say that (A,B) and (C,D) are harmonic conjugates to each other.

Definition 3. Let each of l1 and l2 be either line or circle. Perspectivity with respect to the point S
=∧
S , is the mapping of l1→ l2, such that

(i) If either l1 or l2 is a circle than it contains S;

(ii) every point A1 ∈ l1 is mapped to the point A2 = OA1∩ l2.

According to the previous statements perspectivity preserves the cross ratio and hence the har-
monic conjugates.

Definition 4. Let each of l1 and l2 be either line or circle. Projectivity is any mapping from l1 to l2
that can be represented as a finite composition of perspectivities.

Theorem 1. Assume that the points A, B, C, D1, and D2 are either colinear or cocyclic. If the
equation R(A,B;C,D1) = R(A,B;C,D2) is satisfied, then D1 = D2. In other words, a projectivity
with three fixed points is the identity.

Theorem 2. If the points A, B, C, D are mutually discjoint and R(A,B;C,D) = R(B,A;C,D) then
H (A,B;C,D).

2 Desargue’s Theorem
The triangles A1B1C1 and A2B2C2 are perspective with respect to a center if the lines A1A2, B1B2,
andC1C2 are concurrent. They are perspective with respect to an axis if the points K = B1C1∩B2C2,
L= A1C1∩A2C2,M = A1B1∩A2B2 are colinear.

Theorem 3 (Desargue). Two triangles are perspective with respect to a center if and only if they
are perspective with respect to a point.

3 Theorems of Pappus and Pascal
Theorem 4 (Pappus). The points A1, A2, A3 belong to the line a, and the points B1, B2, B3 belong
to the line b. Assume that A1B2∩A2B1 =C3, A1B3∩A3B1 =C2, A2B3∩A3B2 =C1. Then C1, C2, C3
are colinear.

Proof. Denote C′
2 =C1C3 ∩A3B1, D = A1B2 ∩A3B1, E = A2B1 ∩A3B2, F = a∩ b. Our goal is to

prove that the pointsC2 andC′
2 are identical. Consider the sequence of projectivities:

A3B1DC2 =∧
A1 FB1B2B3 =∧

A2 A3EB2C1 =∧
C3 A3B1DC′

2.

We have got the projective transformation of the line A3B1 that fixes the points A3, B1, D, and maps
C2 toC′

2. Since the projective mapping with three fixed points is the identity we haveC2 =C′
2. �
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A1 A2 A3

B1

B2

B3
C1

C3
D

C2

F

A1

A2 A3

B1 B2 B3

C1

C3 D
C2

Theorem 5 (Pascal). Assume that the points A1, A2, A3, B1, B2, B3 belong to a circle. The point in
intersections of A1B2 with A2B1, A1B3 with A3B1, A2B3 with A3B2 lie on a line.

Proof. The points C′
2, D, and E as in the proof of the Pappus theorem. Consider the sequence of

perspectivities
A3B1DC2 =∧

A1 A3B1B2B3 =∧
A2 A3EB2C1 =∧

C3 A3B1DC′
2.

In the same way as above we conclude that C2 =C′
2. �

4 Pole. Polar. Theorems of Brianchon and Brokard
Definition 5. Given a circle k(O,r), let A∗ be the image of the point A �=O under the inversion with
respect to k. The line a passing through A∗ and perpendicular to OA is called the polar of A with
respect to k. Conversely A is called the pole of a with respect to k.

Theorem 6. Given a circle k(O,r), let and a and b be the polars of A and B with respect to k. The
A ∈ b if and only if B ∈ a.

Proof. A ∈ b if and only if ∠AB∗O = 90◦. Analogously B ∈ a if and only if ∠BA∗O = 90◦, and it
reamins to notice that according to the basic properties of inversion we have ∠AB∗O= ∠BA∗O. �

Definition 6. Points A and B are called conjugated with respect to the circle k if one of them lies on
a polar of the other.

Theorem 7. If the line determined by two conjugated points A and B intersects k(O,r) at C and D,
thenH (A,B;C,D). Conversely ifH (A,B;C,D), where C,D ∈ k then A and B are conjugated with
respect to k.

Proof. Let C1 and D1 be the intersection points of OA with k. Since the inversion preserves the
cross-ratio andR(C1,D1;A,A∗) = R(C1,D1;A∗,A) we have

H (C1,D1;A,A∗). (7)

Let p be the line that contains A and intersects k at C and D. Let E =CC1∩DD1, F =CD1∩DC1.
Since C1D1 is the diameter of k we have C1F⊥D1E and D1F⊥C1E , hence F is the orthocenter of
the triangleC1D1E . Let B= EF ∩CD and Ā∗ = EF ∩C1D1. Since

C1D1AĀ∗ =∧
E CDAB =∧

F D1C1AĀ∗

haveH (C1,D1;A, Ā∗) andH (C,D;A,B). (7) now implies two facts:

1◦ From H (C1,D1;A, Ā∗) and H (C1,D1;A,A∗) we get A∗ = Ā∗, hence A∗ ∈ EF . However,
since EF⊥C1D1, the line EF = a is the polar of A.

2◦ For the point B which belongs to the polar of A we have H (C,D;A,B). This completes the
proof. �

Theorem 8 (Brianchon’s theorem). Assume that the hexagon A1A2A3A4A5A6 is circumscribed
about the circle k. The lines A1A4, A2A5, and A3A6 intersect at a point.
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Proof. We will use the convention in which the points will be denoted by capital latin letters, and
their repsective polars with the corresponding lowercase letters.
Denote by Mi, i = 1,2, . . . ,6, the points of tangency of AiAi+1 with k. Since mi = AiAi+1, we

haveMi ∈ ai, Mi ∈ ai+1, hence ai =Mi−1Mi.
Let b j = AjA j+3, j = 1,2,3. Then Bj = a j ∩ a j+3 = Mj−1Mj ∩Mj+3Mj+4. We have to prove

that there exists a point P such that P ∈ b1,b2,b3, or analogously, that there is a line p such that
B1,B2,B3 ∈ p. In other words we have to prove that the points B1, B2, B3 are colinear. However this
immediately follows from the Pascal’s theorem applied to M1M3M5M4M6M2. �

From the previous proof we see that the Brianchon’s theorem is obtained from the Pascal’s by
replacing all the points with their polars and all lines by theirs poles.

Theorem 9 (Brokard). The quadrilateral ABCD is inscribed in the circle k with center O. Let
E = AB∩CD, F = AD∩BC, G= AC∩BD. Then O is the orthocenter of the triangle EFG.

Proof.We will prove that EG is a polar of F . Let
X = EG∩BC and Y = EG∩AD. Then we also
have

ADYF =∧
E BCXF =∧

G DAYF,
which implies the relations H (A,D;Y,F) and
H (B,C;X ,F). According to the properties of
polar we have that the points X and Y lie on a
polar of the point F , hence EG is a polar of the
point F.

A

B C

D

E

F

G

O

Y

X

Since EG is a polar of F , we have EG⊥OF . Analogously we have FG⊥OE , thus O is the
orthocenter of�EFG. �

5 Problems
1. Given a quadrilateral ABCD, let P = AB∩CD, Q = AD∩BC, R = AC∩PQ, S = BD∩PQ.
Prove thatH (P,Q;R,S).

2. Given a triangleABC and a pointM on BC, let N be the point of the line BC such that∠MAN =
90◦. Prove thatH (B,C;M,N) if and only if AM is the bisector of the angle ∠BAC.

3. Let A and B be two points and let C be the point of the line AB. Using just a ruler find a point
D on the line AB such thatH (A,B;C,D).

4. Let A, B, C be the diagonal points of the quadrilateral PQRS, or equivalently A = PQ∩RS,
B=QR∩SP,C = PR∩QS. If only the points A, B,C, S, are given using just a ruler construct
the points P, Q, R.

5. Assume that the incircle of�ABC touches the sides BC, AC, and AB at D, E , and F . LetM be
the point such that the circle k1 incscibed in �BCM touches BC at D, and the sides BM and
CM at P and Q. Prove that the lines EF , PQ, BC are concurrent.

6. Given a triangle ABC, let D and E be the points on BC such that BD= DE = EC. The line p
intersects AB, AD, AE , AC at K, L, M, N, respectively. Prove that KN ≥ 3LM.

7. The point M1 belongs to the side AB of the quadrilateral ABCD. Let M2 be the projection of
M1 to the line BC fromD,M3 projection ofM2 toCD from A,M4 projection ofM3 to DA from
B,M5 projection ofM4 to AB fromC, etc. Prove that M13 =M1.
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8. (butterfly theorem) PointsM and N belong to the circle k. Let P be the midpoint of the chord
MN, and let AB andCD (A andC are on the same side ofMN) be arbitrary chords of k passing
through P. Prove that lines AD and BC intersectMN at points that are equidistant from P.

9. Given a triangle ABC, let D and E be the points of the sides AB and AC respectively such that
DE‖BC. Let P be an interior point of the triangle ADE . Assume that the lines BP and CP
intersect DE at F and G respectively. The circumcircles of�PDG and�PFE intersect at P
and Q. Prove that the points A, P, and Q are colinear.

10. (IMO 1997 shortlist) Let A1A2A3 be a non-isosceles triangle with the incenter I. LetCi, i= 1,
2, 3, be the smaller circle through I tangent to both AiAi+1 and AiAi+2 (summation of indeces
is done modulus 3). Let Bi, i= 1, 2, 3, be the other intersection point ofCi+1 andCi+2. Prove
that the circumcenters of the triangles A1B1I, A2B2I, A3B3I are colinear.

11. Given a triangle ABC and a point T , let P and Q be the feet of perpendiculars from T to the
lines AB and AC, respectively. Let R and S be the feet of perpendiculars from A to TC and TB,
respectively. Prove that the intersection of PR and QS belongs to BC.

12. Given a triangle ABC and a point M, a line passing through M intersects AB, BC, and CA at
C1, A1, and B1, respectively. The lines AM, BM, and CM intersect the circumcircle of�ABC
repsectively at A2, B2, and C2. Prove that the lines A1A2, B1B2, and C1C2 intersect in a point
that belongs to the circumcircle of�ABC.

13. Let P and Q isogonaly conjugated points and assume that �P1P2P3 and �Q1Q2Q3 are their
pedal triangles, respectively. Let X1 = P2Q3 ∩P3Q2, X2 = P1Q3 ∩P3Q1, X3 = P1Q2 ∩P2Q1.
Prove that the points X1, X2, X3 belong to the line PQ.

14. If the points A and M are conjugated with respect to k, then the circle with diameter AM is
orthogonal to k.

15. From a point A in the exterior of a circle k two tangents AM and AN are drawn. Assume that
K and L are two points of k such that A,K,L are colinear. Prove that MN bisects the segment
PQ.

16. The point isogonaly conjugated to the centroid is called the Lemuan point. The lines connected
the vertices with the Lemuan point are called symmedians. Assume that the tangents from B
and C to the circumcircle Γ of �ABC intersect at the point P. Prove that AP is a symmedian
of�ABC.

17. Given a triangle ABC, assume that the incircle touches the sides BC, CA, AB at the points M,
N, P, respectively. Prove that AM, BN, andCP intersect in a point.

18. Let ABCD be a quadrilateral circumscribed about a circle. LetM, N, P, and Q be the points of
tangency of the incircle with the sides AB, BC, CD, and DA respectively. Prove that the lines
AC, BD,MP, and NQ intersect in a point.

19. Let ABCD be a cyclic quadrilateral whose diagonals AC and BD intersect at O; extensions of
the sides AB andCD at E; the tangents to the circumcircle from A andD at K; and the tangents
to the circumcircle at B andC at L. Prove that the points E , K, O, and L lie on a line.

20. Let ABCD be a cyclic quadrilateral. The lines AB and CD intersect at the point E, and the
diagonals AC and BD at the point F . The circumcircle of the triangles �AFD and �BFC
intersect again at H. Prove that ∠EHF = 90◦.
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6 Solutions
1. Let T = AC∩BD. Consider the sequence of the perspectivities

PQRS =∧
A BDTS =∧

C QPRS.

Since the perspectivity preserves the cross-ratio R(P,Q;R,S) = R(Q,P;R,S) we obtain that
H (P,Q;R,S).

2. Let α = ∠BAC, β = ∠CBA, γ = ∠ACB and ϕ = ∠BAM. Using the sine theorem on �ABM
and�ACM we get

BM
MC

=
BM
AM

AM
CM

=
sinϕ
sinβ

sinγ
sin(α −ϕ)

.

Similarly using the sine theorem on�ABN and�ACN we get
BN
NC

=
BN
AN

AN
CN

=
sin(90◦ −ϕ)

sin(180◦−β )

sinγ
sin(90◦ + α −ϕ)

.

Combining the previous two equations we get

BM
MC

:
BN
NC

=
tanϕ

tan(α −ϕ)
.

Hence, |R(B,C;M,N)| = 1 is equivalent to tanϕ = tan(α −ϕ), i.e. to ϕ = α/2. Since B �=C
and M �= N, the relation |R(B,C;M,N)| = 1 is equivalent to R(B,C;M,N) = −1, and the
statement is now shown.

3. The motivation is the problem 1. Choose a point K outside AB and point L on AK different
from A and K. Let M = BL∩CK and N = BK ∩AM. Now let us construct a point D as
D= AB∩LN. From the problem 1 we indeed haveH (A,B;C,D).

4. Let us denote D = AS∩BC. According to the problem 1 we have H (R,S;A,D). Now we
construct the point D = AS∩BC. We have the points A, D, and S, hence according to the
previous problem we can construct a point R such that H (A,D;S,R). Now we construct
P= BS∩CR and Q=CS∩BR, which solves the problem.

5. It is well known (and is easy to prove using Ceva’s theorem) that the lines AD, BE , and CF
intersect at a pointG (called a Gergonne point of�ABC) Let X = BC∩EF . As in the problem
1 we haveH (B,C;D,X). If we denote X ′ = BC∩PQ we analogously haveH (B,C;D,X ′),
hence X = X ′.

6. Let us denote x= KL, y= LM, z=MN. We have to prove that x+ y+ z≥ 3y, or equivalently
x+ z≥ 2y. SinceR(K,N;L,M) = R(B,C;D,E), we have

x
y+ z

:
x+ y
z

=

−→KL
−→LN

:
−−→KM
−−→MN

=

−→BD
−→
DC

:
−→BE
−→
EC

=
1
2
:
1
2
,

implying 4xz= (x+ y)(y+ z).
If it were y> (x+ z)/2 we would have

x+ y>
3
2
x+

1
2
z= 2

1
4
(x+ x+ x+ z)≥ 2 4√xxxz,

and analogously y+z> 2 4√xzzz as well as (x+y)(y+z) > 4xzwhich is a contradiction. Hence
the assumption y> (x+ z)/2 was false so we have y≤ (x+ z)/2.
Let us analyze the case of equality. If y= (x+ z)/2, then 4xz= (x+ y)(x+ z) = (3x+ z)(x+
3z)/4, which is equivalent to (x− z)2 = 0. Hence the equality holds if x= y= z. We leave to
the reader to prove that x= y= z is satisfied if and only if p ‖ BC.

336
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7. Let E = AB∩CD, F = AD∩BC. Consider the sequence of perspectivities

ABEM1 =∧
D FBCM2 =∧

A DECM3 =∧
B DAFM4 =∧

C EABM5. (8)

According to the conditions given in the problem this sequence of perspectivites has two
be applied three more times to arrive to the point M13. Notice that the given sequence of
perspectivities maps A to E , E to B, and B to A. Clearly if we apply (8) three times the points
A, B, and E will be fixed whileM1 will be mapped toM13. ThusM1 =M13.

8. Let X ′ be the point symmetric to Y with respect to P. Notice that

R(M,N;X ,P) = R(M,N;P,Y ) (fromMNXP =∧
D MNAC =∧

B MNPY )
= R(N,M;P,X ′) ( the reflection with the center P preserves

the ratio, hence it preserves the cross-ratio)

=
1

R(N,M;X ′,P)
= R(M,N;X ′,P),

where the last equality follows from the basic properties of the cross ratio. It follows that
X = X ′.

9. Let J =DQ∩BP, K = EQ∩CP. If we prove that JK ‖ DE this would imply that the triangles
BDJ and CEK are perspective with the respect to a center, hence with repsect to an axis as
well (according to Desargue’s theorem) which immediately implies that A, P, Q are colinear
(we encourage the reader to verify this fact).
Nowwe will prove that JK‖DE . Let us denote T =DE∩PQ. Applying theMenelaus theorem
on the triangle DTQ and the line PF we get

−→DJ
−→
JQ

−→
QP
−→PT

−→TF
−→FD

= −1.

Similarly from the triangle ETQ and the line PG:

−→EK
−→
KQ

−→
QP
−→PT

−→
TG
−→
GE

= −1.

Dividing the last two equalities and using DT ·TG= FT ·TE (T is on the radical axis of the
circumcircles of�DPG and�FPE), we get

−→DJ
−→
JQ

=

−→EK
−→
KQ

.

Thus JK ‖ DE , q.e.d.

10. Apply the inversion with the respect to I. We leave to the reader to draw the inverse picture.
Notice that the condition that I is the incentar now reads that the circumcircles A∗i A∗i+1I are of
the same radii. Indeed if R is the radius of the circle of inversion and r the distance between
I and XY then the radius of the circumcircle of �IX∗Y ∗ is equal to R2/r. Now we use the
following statement that is very easy to prove: ”Let k1, k2, k3 be three circles such that all
pass through the same point I, but no two of them are mutually tangent. Then the centers of
these circles are colinear if and only if there exists another common point J �= I of these three
circles.”
In the inverse picture this transforms into proving that the lines A∗1B

∗
1, A

∗
2B

∗
2, and A

∗
3B

∗
3 intersect

at a point.
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In order to prove this it is enough to show that the corresponding sides of the triangles A∗1A∗2A∗3
and B∗1B∗2B∗3 are parallel (then these triangles would be perspective with respect to the infinitely
far line). Afterwards the Desargue’s theorem would imply that the triangles are perspective
with respect to a center. Let P∗i be the incenter of A∗i+1A∗i+2I, and let Q∗

i be the foot of the
perpendicular from I to P∗i+1P∗i+2. It is easy to prove that

−−→
A∗1A

∗
2 = 2

−−−→
Q∗
1Q

∗
2 = −−−→

P∗1P
∗
2 .

Also since the circles A∗i A∗i+1I are of the same radii, we have P∗1P∗2 ‖ B∗1B∗2, hence A∗1A∗2 ‖ B∗1B∗2.

11. We will prove that the intersection X of PR and QS lies on the line BC. Notice that the points
P, Q, R, S belong to the circle with center AT . Consider the six points A, S, R, T , P, Q that lie
on a circle. Using Pascal’s theorem with respect to the diagram

A S R

T P Q

XB
C

we get that the points B,C, and X = PR∩QS are colinear.

12. First solution, using projective mappings. Let A3 = AM∩BC and B3 = BM∩AC. Let X be
the other intersection point of the line A1A2 with the circumcircle k of �ABC. Let X ′ be the
other intersection point of the line B1B2 with k. Consider the sequence of perspectivities

ABCX =∧
A2 A3BCA1 =∧

M AB3CB1 =∧
B2 ABCX ′

which has three fixed points A, B,C, hence X = X ′. Analogously the lineC1C2 contains X and
the problem is completely solved.

Second solution, using Pascal’s theorem. Assume that the line A1A2 intersect the circumcircle
of the trianlge ABC at A2 and X . Let XB2∩AC= B′1. Let us apply the Pascal’s theorem on the
points A, B,C, A2, B2, X according the diagram:

A B X

B2 A2 C

A1M
B′1

It follows that the points A1, B′1, and M are colinear. Hence B′1 ∈ A1M. According to the
definition of the point B′1 we have B′1 ∈ AC hence B′1 = A1M∩AC= B1. The conclusion is that
the points X , B1, B2 are colinear. Analogously we prove that the points X ,C1,C2 are colinear,
hence the lines A1A2, B1B2,C1C2 intersect at X that belongs to the circumcircle of the triangle
ABC.

13. It is well known (from the theory of pedal triangles) that pedal triangles corresponding to
the isogonally conjugated points have the common circumcircle, so called pedal circle of the
points P and Q. The center of that circle which is at the same time the midpoint of PQ will
be denoted by R. Let P′1 = PP1∩Q1R and P′2 = PP2∩Q2R (the points P′1 and P′2 belong to the
pedal circle of the point P, as point on the same diameters as Q1 and Q2 respectively). Using
the Pascal’s theorem on the points Q1, P2, P′2, Q2, P1, P′1 in the order shown by the diagram
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P1 P′2 Q1

P2 P′1 Q2

RP
X3

we get that the points P, R, X1 are colinear or X1 ∈ PQ. Analogously the points X2, X3 belong
to the line PQ.

14. Let us recall the statement according to which the circle l is invariant under the inversion with
respect to the circle k if and only if l = k or l ⊥ k.
Since the pointM belongs to the polar of the point A with respect to k we have ∠MA∗A= 90◦
where A∗ = ψl(A). Therefore A∗ ∈ l where l is the circle with the radius AM. Analogously
M∗ ∈ l. However from A ∈ l we get A∗ ∈ l∗; A∗ ∈ l yields A ∈ l∗ (the inversion is inverse to
itself) hence ψl(A∗) = A). Similarly we get M ∈ l∗ and M∗ ∈ l∗. Notice that the circles l and
l∗ have the four common points A, A∗, M, M∗, which is exactly two too much. Hence l = l∗
and according to the statement mentioned at the beginning we conclude l = k or l ⊥ k. The
case l = k can be easily eliminated, because the circle l has the diameter AM, and AM can’t be
the diameter of k because A andM are conjugated to each other.
Thus l ⊥ k, q.e.d.

15. Let J =KL∩MN, R= l∩MN, X∞ = l∩AM. SinceMN is the polar of A from J ∈MN we get
H (K,L;J,A). From KLJA =∧

M PQRX∞ we also haveH (P,Q;R,X∞). This implies that R is the
midpoint of PQ.

16. Let Q be the intersection point of the lines AP and BC. Let Q′ be the point of BC such that the
ray AQ′ is isogonal to the ray AQ in the triangle ABC. This exactly means that∠Q′AC= ∠BAQ
i ∠BAQ′ = ∠QAC.
For an arbitrary point X of the segment BC, the sine theorem applied to triangles BAX and
XAC yields

BX
XC

=
BX
AX

AX
XC

=
sin∠BAX
sin∠ABX

sin∠ACX
sin∠XAC

=
sin∠ACX
sin∠ABX

sin∠BAX
sin∠XAC

=
AB
AC
sin∠BAX
sin∠XAC

.

Applying this to X = Q and X =Q′ and multiplying together afterwards we get

BQ
QC

BQ′

Q′C
=
AB
AC
sin∠BAQ
sin∠QAC

AB
AC
sin∠BAQ′

sin∠Q′AC
=
AB2

AC2
. (9)

Hence if we prove BQ/QC = AB2/AC2 we would immediately have BQ′/Q′C = 1, making
Q′ the midpoint of BC. Then the line AQ is isogonaly conjugated to the median, implying the
required statement.
Since P belongs to the polars of B and C, then the points B and C belong to the polar of the
point P, and we conclude that the polar of P is precisely BC. Consider the intersection D of
the line BC with the tangent to the circumcircle at A. Since the point D belongs to the polars
of A and P, AP has to be the polar of D. HenceH (B,C;D,Q). Let us now calculate the ratio
BD/DC. Since the triangles ABD andCAD are similar we have BD/AD= AD/CD= AB/AC.
This implies BD/CD= (BD/AD)(AD/CD) = AB2/AC2. The relationH (B,C;D,Q) implies
BQ/QC= BD/DC = AB2/AC2, which proves the statement.

17. The statement follows from the Brianchon’s theorem applied to APBMCN.

18. Applying the Brianchon’s theorem to the hexagon AMBCPD we get that the lineMP contains
the intersection of AB and CD. Analogously, applying the Brianchon’s theorem to ABNCDQ
we get that NQ contains the same point.
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19. The Brokard’s theorem claims that the polar of F = AD∩BC is the line f = EO. Since the
polar of the point on the circle is equal to the tangent at that point we know that K = a∩ d,
where a and d are polars of the points A and D. Thus k = AD. Since F ∈ AD = k, we have
K ∈ f as well. Analogously we can prove that L ∈ f , hence the points E, O, K, L all belong to
f .

20. Let G = AD∩BC. Let k be the circumcircle of ABCD. Denote by k1 and k2 respectively the
circumcircles of�ADF and�BCF . Notice that AD is the radical axis of the circles k and k1;
BC the radical axis of k and k2; and FH the radical axis of k1 and k2. According to the famous
theorem these three radical axes intersect at one point G. In other words we have shown that
the points F, G, H are colinear.
Without loss of generality assume that F is between G and H (alternatively, we could use
the oriented angles). Using the inscribed quadrilaterals ADFH and BCFH, we get ∠DHF =
∠DAF = ∠DAC and∠FHC= ∠FBC= ∠DBC, hence∠DHC= ∠DHF+∠FHC= ∠DAC+
∠DBC= 2∠DAC= ∠DOC. Thus the pointsD,C, H, andO lie on a circle. Similarly we prove
that the points A, B, H, O lie on a circle.
Denote by k3 and k4 respectively the circles circumscribed about the quadrilaterals ABHO and
DCHO. Notice that the line AB is the radical axis of the circles k and k3. Simlarly CD and
OH, respectively, are those of the pairs of circles (k,k2) and (k3,k4). Thus these lines have
to intersect at one point, and that has to be E . This proves that the points O, H, and E are
colinear.
According to the Brocard’s theorem we have FH⊥OE , which according to FH = GH and
OE = HE in turn implies that GH⊥HE , q.e.d.

340


	Cover.pdf
	Page 1




